25 research outputs found

    Macronutrient intakes and cardio metabolic risk factors in high BMI African American children

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim of this study was to evaluate the relationship between intakes of energy-providing macronutrients, and markers of cardio metabolic risk factors in high BMI African American (AA) children.</p> <p>Methods</p> <p>A cross sectional analysis of a sample of 9-11 year old children (n = 80) with BMI greater then the 85<sup>th </sup>percentile. Fasting hematological and biochemical measurements, and blood pressure were measured as selected markers of cardio metabolic risk factors and their relationships to dietary intakes determined.</p> <p>Results</p> <p>After adjusting for gender, pubertal stage and waist circumference (WC), multivariate regression analysis showed that higher total energy intakes (when unadjusted for source of energy) were associated with higher plasma concentrations of intermediate density lipoprotein cholesterol (IDL-C) and very low density lipoprotein cholesterol (VLDL-C). Higher intakes of carbohydrate energy (fat and protein held constant) were associated with higher IDL-C, VLDL-C, triglycerides (TG) and homeostasis model assessment of insulin resistance (HOMA-IR). Higher intakes of fat (carbohydrate and protein held constant), however, were associated with lower IDL-C; and higher protein intakes (fat and carbohydrate held constant) were associated with lower HOMA-IR.</p> <p>Conclusion</p> <p>The specific macronutrients that contribute energy are significantly associated with a wide range of cardio metabolic risk factors in high BMI AA children. Increases in carbohydrate energy were associated with undesirable effects including increases in several classes of plasma lipids and HOMA-IR. Increases in protein energy were associated with the desirable effect of reduced HOMA-IR, and fat energy intakes were associated with the desirable effect of reduced IDL-C. This analysis suggests that the effect of increased energy on risk of developing cardio metabolic risk factors is influenced by the source of that energy.</p

    Taking Action Together: A YMCA-based protocol to prevent Type-2 Diabetes in high-BMI inner-city African American children

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Associated with a tripling in obesity since 1970, type 2 diabetes mellitus (T2DM) in children has risen 9-10 fold. There is a critical need of protocols for trials to prevent T2DM in children.</p> <p>Methods/Design</p> <p>This protocol includes the theory, development, evaluation components and lessons learned from a novel YMCA-based T2DM prevention intervention designed specifically for high-BMI African American children from disadvantaged, inner-city neighborhoods of Oakland, California. The intervention was developed on the basis of: review of epidemiological and intervention studies of pediatric T2DM; a conceptual theory (social cognitive); a comprehensive examination of health promotion curricula designed for children; consultation with research, clinical experts and practitioners and; input from community partners. The intervention, <it>Taking Action Together</it>, included culturally sensitive and age-appropriate programming on: healthy eating; increasing physical activity and, improving self esteem.</p> <p>Discussion</p> <p>Evaluations completed to date suggest that <it>Taking Action Together </it>may be an effective intervention, and results warrant an expanded evaluation effort. This protocol could be used in other community settings to reduce the risk of children developing T2DM and related health consequences.</p> <p>Trial registration</p> <p>ClinicalTrials.gov NCT01039116.</p

    Vitamin C in plasma is inversely related to blood pressure and change in blood pressure during the previous year in young Black and White women

    Get PDF
    BackgroundThe prevalence of hypertension and its contribution to cardiovascular disease risk makes it imperative to identify factors that may help prevent this disorder. Extensive biological and biochemical data suggest that plasma ascorbic acid may be such a factor. In this study we examined the association between plasma ascorbic acid concentration and blood pressure (BP) in young-adult women.MethodsParticipants were 242 Black and White women aged 18-21 yr from the Richmond, CA, cohort of the National Heart, Lung and Blood Institute Growth and Health Study. We examined the associations of plasma ascorbic acid with BP at follow-up year 10, and with change in BP during the previous year.ResultsIn cross-sectional analysis, plasma ascorbic acid at year 10 was inversely associated with systolic BP and diastolic BP after adjusting for race, body mass index, education, and dietary intake of fat and sodium. Persons in the highest one-fourth of the plasma ascorbic acid distribution had 4.66 mmHg lower systolic BP (95% CI 1.10 to 8.22 mmHg, p = 0.005) and 6.04 mmHg lower diastolic BP (95% CI 2.70 to 9.38 mmHg, p = 0.0002) than those in the lowest one-fourth of the distribution. In analysis of the change in BP, plasma ascorbic acid was also inversely associated with change in systolic BP and diastolic BP during the previous year. While diastolic blood pressure among persons in the lowest quartile of plasma ascorbic acid increased by 5.97 mmHg (95% CI 3.82 to 8.13 mmHg) from year 9 to year 10, those in the highest quartile of plasma vitamin C increased by only 0.23 mmHg (95% CI -1.90 to +2.36 mmHg) (test for linear trend: p &lt; 0.0001). A similar effect was seen for change in systolic BP, p = 0.005.ConclusionPlasma ascorbic acid was found to be inversely associated with BP and change in BP during the prior year. The findings suggest the possibility that vitamin C may influence BP in healthy young adults. Since lower BP in young adulthood may lead to lower BP and decreased incidence of age-associated vascular events in older adults, further investigation of treatment effects of vitamin C on BP regulation in young adults is warranted

    Accuracy of Multisensor Activity Monitors in Normal Versus High BMI African American Children.

    No full text
    BACKGROUND: Overweight children show different movement patterns during walking than normal-weight children, suggesting the accuracy of multisensory activity monitors may differ in these groups. METHODS: Eleven normal and 15 high BMI African American children walked at 2, 4, 5, and 6 km/h on a treadmill wearing the Intelligent Device for Energy Expenditure and Activity (IDEEA) and SenseWear (SW). Accuracy was determined using indirect calorimetry and manually counted steps as references. RESULTS: For IDEEA, no significant differences in accuracy were observed between BMI groups for energy expenditure (EE), but differences were significant by speed (+15% at 2 km/h to -10% at 6 km/h). For SW, EE accuracy was significantly different for high (+21%) versus normal BMI girls (-13%) at 2 km/h. For high BMI girls, EE was overestimated at low speed and underestimated at higher speeds. Underestimations in steps did not differ by BMI group at 4 to 6 km/h, but were significantly larger at 2 km/h than at the other speeds for all groups with IDEEA, and for normal BMI children with SW. CONCLUSIONS: Similar accuracies during walking may be expected in normal and overweight children using IDEEA and SW. Both monitors showed small errors for steps provided speed exceeded 2 km/h

    Accelerometer response to physical activity intensity in normal-weight versus overweight african american children.

    No full text
    BACKGROUND: Different movement efficiency in overweight children may affect accelerometer output data. The purpose was to investigate the ability of accelerometers to assess physical activity intensity and number of steps in normal-weight compared with overweight children. METHODS: Eleven normal-weight and 14 overweight African American children walked at 2, 4, 5, and 6 km/h on a treadmill wearing Lifecorder, ActiGraph, RT3, and Biotrainer. Oxygen uptake was measured and steps manually counted. Fat free mass (FFM) was assessed from bioelectrical impedance analysis. Accelerometer counts and the individual linear regression lines of accelerometer counts versus VO2/FFM were evaluated, together with steps recorded by Lifecorder and Actigraph. RESULTS: Correlations between accelerometer counts and VO2/FFM for all monitors were r ≥ .95 (P < .01). The accelerometer counts and their relationship to VO2/FFM did not generally differ significantly by body weight status. Lifecorder and Actigraph underestimated steps at 4, 5, and 6 km/h by less than 9%, but the error was up to -95% at 2 km/h. CONCLUSIONS: All 4 accelerometers show high ability to assess physical activity intensity, and can be used to compare physical activity between normal-weight and overweight children. The Lifecorder and the ActiGraph showed high accuracy in assessing steps, providing speed of movement exceeded 2 km/
    corecore