8 research outputs found

    Robust wavebuoys for the marginal ice zone: Experiences from a large persistent array in the Beaufort Sea

    Get PDF
    An array of novel directional wavebuoys was designed and deployed into the Beaufort Sea ice cover in March 2014, as part of the Office of Naval Research Marginal Ice Zone experiment. The buoys were designed to drift with the ice throughout the year and monitor the expected breakup and retreat of the ice cover, forced by waves travelling into the ice from open water. Buoys were deployed from fast-and-light air-supported ice camps, based out of Sachs Harbour on Canada’s Banks Island, and drifted westwards with the sea ice over the course of spring, summer and autumn, as the ice melted, broke up and finally re-froze. The buoys transmitted heave, roll and pitch timeseries at 1 Hz sample frequency over the course of up to eight months, surviving both convergent ice dynamics and significant waves-in-ice events. Twelve of the 19 buoys survived until their batteries were finally exhausted during freeze-up in late October/November. Ice impact was found to have contaminated a significant proportion of the Kalman-filter-derived heave records, and these bad records were removed with reference to raw x/y/z accelerations. The quality of magnetometer-derived buoy headings at the very high magnetic field inclinations close to the magnetic pole was found to be generally acceptable, except in the case of four buoys which had probably suffered rough handling during transport to the ice. In general, these new buoys performed as expected, though vigilance as to the veracity of the output is required

    Feedback control architecture and the bacterial chemotaxis network.

    Get PDF
    PMCID: PMC3088647This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Bacteria move towards favourable and away from toxic environments by changing their swimming pattern. This response is regulated by the chemotaxis signalling pathway, which has an important feature: it uses feedback to 'reset' (adapt) the bacterial sensing ability, which allows the bacteria to sense a range of background environmental changes. The role of this feedback has been studied extensively in the simple chemotaxis pathway of Escherichia coli. However it has been recently found that the majority of bacteria have multiple chemotaxis homologues of the E. coli proteins, resulting in more complex pathways. In this paper we investigate the configuration and role of feedback in Rhodobacter sphaeroides, a bacterium containing multiple homologues of the chemotaxis proteins found in E. coli. Multiple proteins could produce different possible feedback configurations, each having different chemotactic performance qualities and levels of robustness to variations and uncertainties in biological parameters and to intracellular noise. We develop four models corresponding to different feedback configurations. Using a series of carefully designed experiments we discriminate between these models and invalidate three of them. When these models are examined in terms of robustness to noise and parametric uncertainties, we find that the non-invalidated model is superior to the others. Moreover, it has a 'cascade control' feedback architecture which is used extensively in engineering to improve system performance, including robustness. Given that the majority of bacteria are known to have multiple chemotaxis pathways, in this paper we show that some feedback architectures allow them to have better performance than others. In particular, cascade control may be an important feature in achieving robust functionality in more complex signalling pathways and in improving their performance

    Mystery Solved: The Identification of the Two Missing Romanov Children Using DNA Analysis

    Get PDF
    One of the greatest mysteries for most of the twentieth century was the fate of the Romanov family, the last Russian monarchy. Following the abdication of Tsar Nicholas II, he and his wife, Alexandra, and their five children were eventually exiled to the city of Yekaterinburg. The family, along with four loyal members of their staff, was held captive by members of the Ural Soviet. According to historical reports, in the early morning hours of July 17, 1918 the entire family along with four loyal members of their staff was executed by a firing squad. After a failed attempt to dispose of the remains in an abandoned mine shaft, the bodies were transported to an open field only a few kilometers from the mine shaft. Nine members of the group were buried in one mass grave while two of the children were buried in a separate grave. With the official discovery of the larger mass grave in 1991, and subsequent DNA testing to confirm the identities of the Tsar, the Tsarina, and three of their daughters – doubt persisted that these remains were in fact those of the Romanov family. In the summer of 2007, a group of amateur archeologists discovered a collection of remains from the second grave approximately 70 meters from the larger grave. We report forensic DNA testing on the remains discovered in 2007 using mitochondrial DNA (mtDNA), autosomal STR, and Y- STR testing. Combined with additional DNA testing of material from the 1991 grave, we have virtually irrefutable evidence that the two individuals recovered from the 2007 grave are the two missing children of the Romanov family: the Tsarevich Alexei and one of his sisters

    Phenotype Fingerprinting Suggests the Involvement of Single-Genotype Consortia in Degradation of Aromatic Compounds by Rhodopseudomonas palustris

    Get PDF
    Anaerobic degradation of complex organic compounds by microorganisms is crucial for development of innovative biotechnologies for bioethanol production and for efficient degradation of environmental pollutants. In natural environments, the degradation is usually accomplished by syntrophic consortia comprised of different bacterial species. This strategy allows consortium organisms to reduce efforts required for maintenance of the redox homeostasis at each syntrophic level. Cellular mechanisms that maintain the redox homeostasis during the degradation of aromatic compounds by one organism are not fully understood. Here we present a hypothesis that the metabolically versatile phototrophic bacterium Rhodopseudomonas palustris forms its own syntrophic consortia, when it grows anaerobically on p-coumarate or benzoate as a sole carbon source. We have revealed the consortia from large-scale measurements of mRNA and protein expressions under p-coumarate, benzoate and succinate degrading conditions using a novel computational approach referred as phenotype fingerprinting. In this approach, marker genes for known R. palustris phenotypes are employed to determine the relative expression levels of genes and proteins in aromatics versus non-aromatics degrading condition. Subpopulations of the consortia are inferred from the expression of phenotypes and known metabolic modes of the R. palustris growth. We find that p-coumarate degrading conditions may lead to at least three R. palustris subpopulations utilizing p-coumarate, benzoate, and CO2 and H2. Benzoate degrading conditions may also produce at least three subpopulations utilizing benzoate, CO2 and H2, and N2 and formate. Communication among syntrophs and inter-syntrophic dynamics in each consortium are indicated by up-regulation of transporters and genes involved in the curli formation and chemotaxis. The N2-fixing subpopulation in the benzoate degrading consortium has preferential activation of the vanadium nitrogenase over the molybdenum nitrogenase. This subpopulation in the consortium was confirmed in an independent experiment by consumption of dissolved nitrogen gas under the benzoate degrading conditions

    Protection in an ant-plant mutualism: an adaptation or a sensory trap?

    No full text
    Many traits of ant plants and their ant symbionts are thought to be coevolved, but there is little evidence for adaptation in these symbioses. We investigated the ant trait of worker attraction to, and consequent patrolling of, new plant shoots, and we tested two hypotheses to explain the maintenance of this trait. (1) New shoots chemically mimic ant brood or alarm pheromones (a ‘sensory trap’) and thereby elicit worker patrolling of vulnerable plant parts. (2) Worker attraction to new shoots is the result of selection on the ant to direct patrolling to the plant parts that maximize the capture of plant-provided rewards. As our model system, we used the ant plant Cordia nodosa and its protecting ant symbiont Allomerus octoarticulatus var. demerarae. Gas chromatography analyses suggested that compounds were shared between new leaves and Allomerus brood, and Allomerus workers were attracted to brood extracts of nonself colonies, findings that are consistent with the sensory trap hypothesis. However, patrolling Allomerus workers were attracted only to new leaves, whereas brood-tending workers collected from inside plant domatia (‘nurses’) were attracted to Allomerus brood rather than to new leaves. Only patrollers were attracted to new leaves significantly more than to mature leaves, and nurse workers were larger than patroller workers, which suggests that the behavioural differences reflect caste differentiation. Therefore, we reject the sensory trap hypothesis. Our results are consistent with the idea that worker attraction to new shoots is the result of selection
    corecore