8 research outputs found

    Mice learn to avoid regret

    No full text
    <div><p>Regret can be defined as the subjective experience of recognizing that one has made a mistake and that a better alternative could have been selected. The experience of regret is thought to carry negative utility. This typically takes two distinct forms: augmenting immediate postregret valuations to make up for losses, and augmenting long-term changes in decision-making strategies to avoid future instances of regret altogether. While the short-term changes in valuation have been studied in human psychology, economics, neuroscience, and even recently in nonhuman-primate and rodent neurophysiology, the latter long-term process has received far less attention, with no reports of regret avoidance in nonhuman decision-making paradigms. We trained 31 mice in a novel variant of the Restaurant Row economic decision-making task, in which mice make decisions of whether to spend time from a limited budget to achieve food rewards of varying costs (delays). Importantly, we tested mice longitudinally for 70 consecutive days, during which the task provided their only source of food. Thus, decision strategies were interdependent across both trials and days. We separated principal commitment decisions from secondary reevaluation decisions across space and time and found evidence for regret-like behaviors following change-of-mind decisions that corrected prior economically disadvantageous choices. Immediately following change-of-mind events, subsequent decisions appeared to make up for lost effort by altering willingness to wait, decision speed, and pellet consumption speed, consistent with past reports of regret in rodents. As mice were exposed to an increasingly reward-scarce environment, we found they adapted and refined distinct economic decision-making strategies over the course of weeks to maximize reinforcement rate. However, we also found that even without changes in reinforcement rate, mice transitioned from an early strategy rooted in foraging to a strategy rooted in deliberation and planning that prevented future regret-inducing change-of-mind episodes from occurring. These data suggest that mice are learning to avoid future regret, independent of and separate from reinforcement rate maximization.</p></div

    Regret-like sequence effects following change-of-mind wait zone reevaluations.

    No full text
    <p>(A) Following either a skip or enter-then-quit decision in R1, we characterized behaviors on the subsequent trial in R2. (B) Distribution of time spent in R1 from offer onset until a skip decision (OZ time) or quit decision (OZ time plus wait zone time) was made. To control for the effects of differences in time spent skipping versus entering-then-quitting in R1 on behavior in Restaurant 2, we compared trials matched for resource depletion between conditions. (C-D) Data averaged across the 1–30 s offer block. (C) Probability of entering an offer in R2 after skipping versus quitting in R1. (D) OZ RT in R2 after skipping versus quitting in R1. (E) Time spent consuming an earned pellet and lingering at the reward site in R2 after skipping versus quitting in R1. (F-H) Postskip versus post-enter-then-quit sequence data across the entire experiment from (C-E), respectively. Data are presented as the cohort’s (<i>N</i> = 31) means (±1 SE). Color code on the x-axis in (F-H) reflects the stages of training (offer cost ranges denoted from 1 to the number on the top of panel F). Vertical dashed lines (except pink) represent block transitions. * indicate significant difference between skip versus quit conditions. Data available as a supplemental file. OZ, offer zone; R1, restaurant 1; R2, restaurant 2; RT, reaction time.</p

    Allocation of a limited time budget among separable decision processes.

    No full text
    <p>(A) Cumulative time spent engaged in various separable behaviors and decision processes calculated as percent of the total 1 h daily session’s time budget. (B) Average time in the OZ from offer onset upon restaurant entry until either a skip or enter decision was made. (C) Average time in the WZ from countdown onset until a quit decision was made. (D) Average time in the WZ from countdown onset until a pellet was earned. (E) Average time near the reward site from pellet delivery until mice exited the WZ and entered the hallway, advancing to the next restaurant. (F) Average time spent traveling in the hallway between restaurants between trials (from either a skip, quit, or postearn leave decision until the next trial’s offer onset upon subsequent restaurant entry). Data are presented as the cohort’s (<i>N</i> = 31) daily means (±1 SE) across the entire experiment. Color code on the x-axis reflects the stages of training (offer cost ranges denoted from 1 to the number on the top of panel A). Vertical dashed lines (except pink) represent block transitions. * on the x-axis indicates immediate significant behavioral change at the block transition; otherwise, * indicates gradual significant changes within the 1−30 s block during either the early 2 wk adaptation period or late pink epoch. Data available as a supplemental file. OZ, offer zone; WZ, wait zone.</p

    Longitudinal economic design of the Restaurant Row task.

    No full text
    <p>(A) Experimental timeline. Mice were trained for 70 consecutive d, earning their only source of food on this task. Stages of training were broken up into blocks in which the range of possible offers began in a reward-rich environment (all offers were always 1 s, green epoch) and escalated to increasingly reward-scarce environments (offer ranges of 1–5 s, 1–15 s, 1–30 s). (B) Task schematic. Food-restricted mice were trained to encounter serial offers for flavored rewards in 4 “restaurants.” Restaurant flavor and location were fixed and signaled via contextual cues. Each restaurant contained a separate offer zone and wait zone. Tones sounded in the offer zone; fixed tone pitch indicated delay (randomly selected from that block’s offer range) mice would have to wait in the wait zone. Tone pitch descended during delay “countdown” if mice chose to enter the wait zone. Mice could quit the wait zone for the next restaurant during the countdown, terminating the trial. Mice were tested daily for 60 min. (C) Example session (from the 1–30 s red epoch) with individual trials plotted as dots. This representative mouse entered low delays and skipped high delays in the offer zone while sometimes quitting once in the wait zone (black dots). Dashed vertical lines represent calculated offer zone (green) and wait zone (blue) “thresholds” of willingness to budget time. Thresholds were measured from the inflection point of fitting a sigmoid curve to enters versus skips or earns versus quits as a function of delay cost. Data available as a supplemental file.</p

    Development of deliberative behaviors during principal OZ valuations.

    No full text
    <p>(A-B) Example <b>x</b> and <b>y</b> locations of a mouse’s path trajectory in the OZ (wait zone not depicted) over time during a single trial (from day 70). (A) Skip decision for a high-delay offer. The mouse initially oriented toward entering (right) but then ultimately reoriented to skip (left). WZ Th. minus offer captures the relative subjective “value” of the offer. Negative value denotes an economically unfavorable offer. (B) Enter decision for positively valued offer; rapid without reorientations. This OZ trajectory pattern is indistinguishable from enter-then-quit decisions for negatively valued offers. (C) Average OZ RT split by enter versus skip decisions across days of training. (D) Average OZ VTE behavior split by enter versus skip decisions across days of training. Data are presented as the cohort’s (<i>N</i> = 31) daily means (±1 SE) across the entire experiment. Color code on the x-axis in (C-D) reflects the stages of training (offer cost ranges denoted from 1 to the number on the top of panel C). Vertical dashed lines (except pink) represent block transitions. * indicates gradual significant changes within the 1–30 s block during the early 2 wk adaptation period. Data available as a supplemental file. OZ, offer zone; RT, reaction time; VTE, vicarious trial and error; WZ Th., wait zone threshold.</p

    Development of separate intermediate wait zone and long-term offer zone efficient decision-making strategies.

    No full text
    <p>(A) Offer zone inefficiency ratio. V<sub>O</sub> = WZ–O. Probability of entering negatively valued offers relative to the probability of skipping negatively valued offers. Horizontal dashed line indicates equivalent 1:1 ratio of entering versus skipping negatively valued offers. (B) Wait zone inefficiency ratio. V<sub>L</sub> = WZ–TL. Probability of quitting negatively valued offers when V<sub>L</sub> was positive relative to when V<sub>L</sub> was still negative. Horizontal dashed line indicates equivalent 1:1 ratio of quitting inefficiently versus efficiently. Data are presented as the cohort’s (<i>N</i> = 31) daily means (±1 SE) across the entire experiment. Color code on the x-axis reflects the stages of training (offer cost ranges denoted from 1 to the number on the top of panel A). Vertical dashed lines (except pink) represent block transitions. * on the x-axis indicates ratio significantly greater than 1:1 immediately following the 1–30 s block transition; otherwise, * indicates gradual significant changes within the 1–30 s block during either the early 2 wk adaptation period or late pink epoch. Data available as a supplemental file. O, offer cost; TL, countdown time left; V<sub>L</sub>, value of time left in countdown at the moment of quitting; V<sub>O</sub>, offer value; WZ, wait zone threshold.</p

    Changes in economic decisions in an increasingly reward-scarce environment.

    No full text
    <p>(A-B) Primary dependent variables: total earned food intake (A) and reinforcement rate (B), measured as average time between earnings. Transition to the 1–30 s block caused a significant decrease in food intake and reinforcement rate. By approximately day 32, food intake and reinforcement rate renormalized back to stable baseline levels compared to previous testing in reward-rich environments. The epoch marked in pink defines this renormalization to baseline and is used throughout the remaining longitudinal plots. (C) Number of self-paced laps run (serially encountering an offer in each of the 4 restaurants). (D) Proportion of total offers entered versus skipped. Horizontal dashed line represents 0.5 level. (E) Proportion of total enters earned versus quit. Horizontal dashed line represents 0.5 level. (F) Economic decision thresholds: OZ and WZ choice outcomes as a function of cost. Horizontal dashed lines represent the maximum possible threshold in each block. Data are presented as the cohort’s (<i>N</i> = 31) daily means (±1 SE) across the entire experiment. Color code on the x-axis reflects the stages of training (offer cost ranges denoted from 1 to the number on the top of panel A). Vertical dashed lines (except pink) represent offer block transitions. * on the x-axis indicates immediate significant behavioral change at the block transition; otherwise, * indicates gradual significant changes within the 1–30 s block during either the early 2 wk adaptation period or late pink epoch. Data available as a supplemental file. OZ, offer zone; WZ, wait zone</p

    Putative Kappa Opioid Heteromers As Targets for Developing Analgesics Free of Adverse Effects

    No full text
    It is now generally recognized that upon activation by an agonist, ÎČ-arrestin associates with G protein-coupled receptors and acts as a scaffold in creating a diverse signaling network that could lead to adverse effects. As an approach to reducing side effects associated with Îș opioid agonists, a series of ÎČ-naltrexamides <b>3</b>–<b>10</b> was synthesized in an effort to selectively target putative Îș opioid heteromers without recruiting ÎČ-arrestin upon activation. The most potent derivative <b>3</b> (INTA) strongly activated KOR-DOR and KOR-MOR heteromers in HEK293 cells. In vivo studies revealed <b>3</b> to produce potent antinociception, which, when taken together with antagonism data, was consistent with the activation of both heteromers. <b>3</b> was devoid of tolerance, dependence, and showed no aversive effect in the conditioned place preference assay. As immunofluorescence studies indicated no recruitment of ÎČ-arrestin2 to membranes in coexpressed KOR-DOR cells, this study suggests that targeting of specific putative heteromers has the potential to identify leads for analgesics devoid of adverse effects
    corecore