18 research outputs found

    The debris disk around gamma Doradus resolved with Herschel

    Full text link
    We present observations of the debris disk around gamma Doradus, an F1V star, from the Herschel Key Programme DEBRIS (Disc Emission via Bias-free Reconnaissance in the Infrared/Submillimetre). The disk is well-resolved at 70, 100 and 160 micron, resolved along its major axis at 250 micron, detected but not resolved at 350 micron, and confused with a background source at 500 micron. It is one of our best resolved targets and we find it to have a radially broad dust distribution. The modelling of the resolved images cannot distinguish between two configurations: an arrangement of a warm inner ring at several AU (best-fit 4 AU) and a cool outer belt extending from ~55 to 400 AU or an arrangement of two cool, narrow rings at ~70 AU and ~190 AU. This suggests that any configuration between these two is also possible. Both models have a total fractional luminosity of ~10^{-5} and are consistent with the disk being aligned with the stellar equator. The inner edge of either possible configuration suggests that the most likely region to find planets in this system would be within ~55 AU of the star. A transient event is not needed to explain the warm dust's fractional luminosity.Comment: 12 pages, 6 figures, accepted for publication in Ap

    Stage-specific functions of Semaphorin7A during adult hippocampal neurogenesis rely on distinct receptors

    Get PDF
    The guidance protein Semaphorin7A (Sema7A) is required for the proper development of the immune and nervous systems. Despite strong expression in the mature brain, the role of Sema7A in the adult remains poorly defined. Here we show that Sema7A utilizes different cell surface receptors to control the proliferation and differentiation of neural progenitors in the adult hippocampal dentate gyrus (DG), one of the select regions of the mature brain where neurogenesis occurs. PlexinC1 is selectively expressed in early neural progenitors in the adult mouse DG and mediates the inhibitory effects of Sema7A on progenitor proliferation. Subsequently, during differentiation of adult-born DG granule cells, Sema7A promotes dendrite growth, complexity and spine development through β1-subunit-containing integrin receptors. Our data identify Sema7A as a key regulator of adult hippocampal neurogenesis, providing an example of how differential receptor usage spatiotemporally controls and diversifies the effects of guidance cues in the adult brain

    Pharmacological inactivation of the prelimbic cortex emulates compulsive reward seeking in rats

    No full text
    Drug addiction is a chronic, relapsing brain disorder characterized by compulsive drug use. Contemporary addiction theories state that loss of control over drug use is mediated by a combination of several processes, including a transition from goal-directed to habitual forms of drug seeking and taking, and a breakdown of the prefrontally-mediated cognitive control over drug intake. In recent years, substantial progress has been made in the modelling of loss of control over drug use in animal models, but the neural substrates of compulsive drug use remain largely unknown. On the basis of their involvement in goal-directed behaviour, value-based decision making, impulse control and drug seeking behaviour, we identified the prelimbic cortex (PrL) and orbitofrontal cortex (OFC) as candidate regions to be involved in compulsive drug seeking. Using a conditioned suppression model, we have previously shown that prolonged cocaine self-administration reduces the ability of a conditioned aversive stimulus to reduce drug seeking, which may reflect the unflagging pursuit of drugs in human addicts. Therefore, we tested the hypothesis that dysfunction of the PrL and OFC underlies loss of control over drug seeking behaviour, apparent as reduced conditioned suppression. Pharmacological inactivation of the PrL, using the GABA receptor agonists baclofen and muscimol, reduced conditioned suppression of cocaine and sucrose seeking in animals with limited self-administration experience. Inactivation of the OFC did not influence conditioned suppression, however. These data indicate that reduced neural activity in the PrL promotes persistent seeking behaviour, which may underlie compulsive aspects of drug use in addiction. This article is part of a Special Issue entitled SI:Addiction circuits

    Chronic dietary changes in n-6/n-3 polyunsaturated fatty acid ratios cause developmental delay and reduce social interest in mice

    Get PDF
    Polyunsaturated fatty acids (PUFAs) are one of the main cellular building blocks, and dietary changes in PUFA composition are proposed as a potential route to influence brain development. For example, initial studies indicated that there is a relation between blood omega-6(n-6)/omega-3(n-3) PUFA ratios and neurodevelopmental disease diagnosis. To study the consequences of dietary n-6/n-3 PUFA ratio changes, we investigated the impact of a n-3 supplemented and n-3 deficient diet in developing BTBR T + Itpr3tf/J (BTBR) - a mouse inbred strain displaying Autism Spectrum Disorder (ASD)-like symptomatology - and control C57BL/6J mice. This study showed that pre- and postnatal changed dietary n-6/n-3 ratio intake has a major impact on blood and brain PUFA composition, and led to delayed physical development and puberty onset in both strains. The PUFA induced developmental delay did not impact adult cognitive performance, but resulted in reduced social interest, a main ASD behavioral feature. Thus, both chronic dietary n-3 PUFA supplementation and depletion may not be beneficial

    Chronic dietary changes in n-6/n-3 polyunsaturated fatty acid ratios cause developmental delay and reduce social interest in mice

    Get PDF
    Polyunsaturated fatty acids (PUFAs) are one of the main cellular building blocks, and dietary changes in PUFA composition are proposed as a potential route to influence brain development. For example, initial studies indicated that there is a relation between blood omega-6(n-6)/omega-3(n-3) PUFA ratios and neurodevelopmental disease diagnosis. To study the consequences of dietary n-6/n-3 PUFA ratio changes, we investigated the impact of a n-3 supplemented and n-3 deficient diet in developing BTBR T + Itpr3tf/J (BTBR) – a mouse inbred strain displaying Autism Spectrum Disorder (ASD)-like symptomatology - and control C57BL/6J mice. This study showed that pre- and postnatal changed dietary n-6/n-3 ratio intake has a major impact on blood and brain PUFA composition, and led to delayed physical development and puberty onset in both strains. The PUFA induced developmental delay did not impact adult cognitive performance, but resulted in reduced social interest, a main ASD behavioral feature. Thus, both chronic dietary n-3 PUFA supplementation and depletion may not be beneficial

    Solidarity in water management

    No full text
    textabstractAdaptation to climate change can be an inclusive and collective, rather than an individual effort. The choice for collective arrangements is tied to a call for solidarity. We distinguish between one-sided (assisting community members in need) and two-sided solidarity (furthering a common interest) and between voluntary and compulsory solidarity. We assess the strength of solidarity as a basis for adaptation measures in six Dutch water management case studies. Traditionally, Dutch water management is characterized by compulsory two-sided solidarity at the water board level. Since the French times, the state is involved through compulsory national solidarity contributions to avoid societal disruption by major floods. In so far as this furthers a common interest, the contributions qualify as two-sided solidarity, but if it is considered assistance to flood-prone areas, they also qualify as one-sided solidarity. Although the Delta Programme explicitly continues on this path, our case studies show that solidarity continues to play an important role in Dutch water management in the process of adapting to a changing climate, but that an undifferentiated call for solidarity will likely result in debates over who should pay what and why. Such discussions can lead to cancellation or postponement of adaptation measures, which ar

    Molecular signatures and cellular diversity during mouse habenula development

    No full text
    The habenula plays a key role in various motivated and pathological behaviors and is composed of molecularly distinct neuron subtypes. Despite progress in identifying mature habenula neuron subtypes, how these subtypes develop and organize into functional brain circuits remains largely unknown. Here, we performed single-cell transcriptional profiling of mouse habenular neurons at critical developmental stages, instructed by detailed three-dimensional anatomical data. Our data reveal cellular and molecular trajectories during embryonic and postnatal development, leading to different habenular subtypes. Further, based on this analysis, our work establishes the distinctive functional properties and projection target of a subtype of Cartpt+ habenula neurons. Finally, we show how comparison of single-cell transcriptional profiles and GWAS data links specific developing habenular subtypes to psychiatric disease. Together, our study begins to dissect the mechanisms underlying habenula neuron subtype-specific development and creates a framework for further interrogation of habenular development in normal and disease states

    Stage-specific functions of Semaphorin7A during adult hippocampal neurogenesis rely on distinct receptors

    No full text
    The guidance protein Semaphorin7A (Sema7A) is required for the proper development of the immune and nervous systems. Despite strong expression in the mature brain, the role of Sema7A in the adult remains poorly defined. Here we show that Sema7A utilizes different cell surface receptors to control the proliferation and differentiation of neural progenitors in the adult hippocampal dentate gyrus (DG), one of the select regions of the mature brain where neurogenesis occurs. PlexinC1 is selectively expressed in early neural progenitors in the adult mouse DG and mediates the inhibitory effects of Sema7A on progenitor proliferation. Subsequently, during differentiation of adult-born DG granule cells, Sema7A promotes dendrite growth, complexity and spine development through β1-subunit-containing integrin receptors. Our data identify Sema7A as a key regulator of adult hippocampal neurogenesis, providing an example of how differential receptor usage spatiotemporally controls and diversifies the effects of guidance cues in the adult brain

    Molecular signatures and cellular diversity during mouse habenula development

    No full text
    The habenula plays a key role in various motivated and pathological behaviors and is composed of molecularly distinct neuron subtypes. Despite progress in identifying mature habenula neuron subtypes, how these subtypes develop and organize into functional brain circuits remains largely unknown. Here, we performed single-cell transcriptional profiling of mouse habenular neurons at critical developmental stages, instructed by detailed three-dimensional anatomical data. Our data reveal cellular and molecular trajectories during embryonic and postnatal development, leading to different habenular subtypes. Further, based on this analysis, our work establishes the distinctive functional properties and projection target of a subtype of Cartpt+ habenula neurons. Finally, we show how comparison of single-cell transcriptional profiles and GWAS data links specific developing habenular subtypes to psychiatric disease. Together, our study begins to dissect the mechanisms underlying habenula neuron subtype-specific development and creates a framework for further interrogation of habenular development in normal and disease states

    Antagonizing Increased miR-135a Levels at the Chronic Stage of Experimental TLE Reduces Spontaneous Recurrent Seizures

    No full text
    Mesial temporal lobe epilepsy (mTLE) is a chronic neurological disease characterized by recurrent seizures. The antiepileptic drugs currently available to treat mTLE are ineffective in one-third of patients and lack disease-modifying effects. miRNAs, a class of small noncoding RNAs which control gene expression at the post-transcriptional level, play a key role in the pathogenesis of mTLE and other epilepsies. Although manipulation of miRNAs at acute stages has been reported to reduce subsequent spontaneous seizures, it is uncertain whether targeting miRNAs at chronic stages of mTLE can also reduce seizures. Furthermore, the functional role and downstream targets of most epilepsy-associated miRNAs remain poorly understood. Here, we show that miR-135a is selectively upregulated within neurons in epileptic brain and report that targeting miR-135a in vivo using antagomirs after onset of spontaneous recurrent seizures can reduce seizure activity at the chronic stage of experimental mTLE in male mice. Further, by using an unbiased approach combining immunoprecipitation and RNA sequencing, we identify several novel neuronal targets of miR-135a, including Mef2a Mef2 proteins are key regulators of excitatory synapse density. Mef2a and miR-135a show reciprocal expression regulation in human (of both sexes) and experimental TLE, and miR-135a regulates dendritic spine number and type through Mef2. Together, our data show that miR-135a is target for reducing seizure activity in chronic epilepsy, and that deregulation of miR-135a in epilepsy may alter Mef2a expression and thereby affect synaptic function and plasticity.SIGNIFICANCE STATEMENT miRNAs are post-transcriptional regulators of gene expression with roles in the pathogenesis of epilepsy. However, the precise mechanism of action and therapeutic potential of most epilepsy-associated miRNAs remain poorly understood. Our study reveals dramatic upregulation of the key neuronal miRNA miR-135a in both experimental and human mesial temporal lobe epilepsy. Silencing miR-135a in experimental temporal lobe epilepsy reduces seizure activity at the spontaneous recurrent seizure stage. These data support the exciting possibility that miRNAs can be targeted to combat seizures after spontaneous seizure activity has been established. Further, by using unbiased approaches novel neuronal targets of miR-135a, including members of the Mef2 protein family, are identified that begin to explain how deregulation of miR-135a may contribute to epilepsy
    corecore