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Abstract 
Polyunsaturated fatty acids (PUFAs) are one of the main cellular building blocks, and dietary 
changes in PUFA composition are proposed as a potential route to influence brain develop- 
ment. For example, initial studies indicated that there is a relation between blood omega-6(n- 
6)/omega-3(n-3) PUFA ratios and neurodevelopmental disease diagnosis. To study the conse- 
quences of dietary n-6/n-3 PUFA ratio changes, we investigated the impact of a n-3 supple- 
mented and n-3 deficient diet in developing BTBR T + Itpr3tf/J (BTBR) – a mouse inbred strain 
displaying Autism Spectrum Disorder (ASD)-like symptomatology - and control C57BL/6J mice. 

Abbreviations: ADHD, Attention Deficit Hyperactivity Disorder; ASD, Autism Spectrum Disorders; BL6, C57BL/6J mouse; BPS, Balano- 
Preputial Separation; BTBR, BTBR T + Itpr3tf/J; DHA, Docosahexaenoic acid, 22:6n-3; EFA, Essential Fatty Acids; EPA, Eicopentaenoic acid, 
20:4n-3; EPM, Elevated Plus Maze; eSH, Extended SHIRPA screen; GLA, Gamma-linolenic acid, 18:3n-6; HC, Home cage screen; LC/MS, Liquid 
chromatography – mass spectrometry; n-3, Omega-3; n-6, Omega-6; OF, Open Field; PE, Phosphatidylethanolamine; PS, Phosphatidylserine; 
PUFA, Polyunsaturated fatty acids, RR, Rota-Rod. 
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This study showed that pre- and postnatal changed dietary n-6/n-3 ratio intake has a major 
impact on blood and brain PUFA composition, and led to delayed physical development and 
puberty onset in both strains. The PUFA induced developmental delay did not impact adult 
cognitive performance, but resulted in reduced social interest, a main ASD behavioral feature. 
Thus, both chronic dietary n-3 PUFA supplementation and depletion may not be beneficial. 
© 2018 Elsevier B.V. and ECNP. All rights reserved. 
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. Introduction 

olyunsaturated fatty acids (PUFAs) are main components 
f phospholipids and part of each cell ( Rustan and Drevon,
005 ). These building blocks are important for cell growth
nd development and influence multiple processes in the 
ody. PUFAs can be categorized in 2 different classes, 
amely, omega-6 (n-6) and omega-3 (n-3) PUFAs, depend- 
ng on the start of the first double carbon bond ( Jenski and
tillwell, 2001; Rustan and Drevon, 2005 ). N-6 and n-3 PUFA
recursors compete for the same enzymes in the PUFA path-
ay and, as a consequence, high intake of one, results in
ower levels in the pathway of the other. The amount of all
orms of n-6 and n-3 PUFAs in the body is mainly dependent
n dietary precursor and mainly longer chain PUFA intake, as 
he body cannot synthesize the n-6 and n-3 essential fatty
cids (EFAs) itself ( Schmitz and Ecker, 2008 ). The overall
ffects of these PUFAs appear not dependent on individual 
evels but rather on the ratio of omega-6/omega-3 (n-6/n-3) 
UFAs ( Simopoulos, 2011 ). 
Prenatally, the unborn child accumulates PUFAs in the 

rain primarily during the last trimester of pregnancy 
 Bernardi et al., 2012; Hamosh and Salem Jr., 1998 ) and
he level of accretion is dependent on maternal PUFA in-
ake ( Greenberg et al., 2008; Jensen, 2006 ). This period is
ssumed to be most critical for cognitive development, as n-
 PUFA docosahexaenoic acid (n-3 DHA; 22:6n-3) accretion 
n the last trimester is highest due to increased neurogene-
is and cell maturation ( Bernardi et al., 2012; Greenberg et
l., 2008; Jensen, 2006; Riediger et al., 2009 ). Postnatally, 
he highest accretion of n-3 DHA is in the first six months
f life; about 50% of the total n-3 DHA body accumulation
uring this period takes place in the brain ( Guesnet and
lessandri, 2011 ). This indicates the importance of n-3 DHA
resence during brain development ( Bernardi et al., 2012; 
uesnet and Alessandri, 2011 ) and changing these lipid con- 
entrations may lead to problems with lipid profiles and sig- 
aling ( Wong and Crawford, 2014 ). The impact of these al-
erations in PUFA concentration and ratio is dependent on 
iming and duration of this PUFA change ( Jensen, 2006 ).
hus, n-3 PUFAs are nutrients needed for optimal nervous 
ystem development and changing these might be detrimen- 
al for brain development ( Guesnet and Alessandri, 2011; 
ong and Crawford, 2014 ). 
Historically, our dietary composition changed signif- 

cantly, especially since the introduction of artificially 
roduced n-6 rich vegetable oils and the reduction in 
ietary cholesterol intake. These vegetable oils were 
holesterol-free resulting in a strong increase of dietary n- 
 PUFA, but stable n-3 PUFA intake ( Gerrior et al., 2004 ;
iza and Bente, 2011 ). Recent studies have shown that
ower blood levels of n-3 PUFAs have been found in patients
ith depression, dyslexia, schizophrenia, attention-deficit 
yperactivity disorder (ADHD) or autism spectrum disorders 
ASD) compared to controls ( Gow and Hibbeln, 2014; Perica
nd Delas, 2011; Richardson and Ross, 2000 ), suggesting that
 higher n-6/n-3 PUFA ratio and thus proportionally reduced
-3 PUFA levels in the body is related to the prevalence of
rain disorders ( Haag, 2003; Riediger et al., 2009 ). For ASD,
 neurodevelopmental disorder characterized by develop- 
ental delay and deficits in social interaction and stereo-
yped behaviors ( American Psychiatric Association, 2013 ), 
e and others recently hypothesized that the increasing rise
n autism prevalence ( Blaxill, 2004; Centers for Disease Con-
rol and Prevention, 2014, 2012 ) parallels the disturbed di-
tary n-6/n-3 PUFA ratio following the introduction of these
rtificial oils ( Neggers, 2014; van Elst et al., 2014 ). Related
o this hypothesis, there is evidence that n-3 DHA is a blood
erum biomarker for ASD; lower levels of n-3 DHA could pre-
ict ASD diagnosis ( Bell et al., 2000; Brown et al., 2014;
ang et al., 2016 ). However, despite a variety of studies
n the influence of PUFAs on development ( Riediger et al.,
009 ), it is still uncertain whether changes in PUFA ratio, es-
ecially with a n-3 supplemented or n-3 deficient feeding,
s beneficial for brain functioning ( Bazinet and Chu, 2014;
yall and Michael-Titus, 2008; Simopoulos, 2006 ). Further-
ore, the question remains whether adding n-3 PUFAs to a
iet should be used as an alternative treatment for this neu-
odevelopmental disorders, such as ASD ( Brondino et al.,
015; Hanson et al., 2007; Lofthouse et al., 2012; Ranjan
nd Nasser, 2015 ). 
Animal studies can provide insights into the contribu- 

ion of n-6/n-3 PUFA ratio on brain and behavioral de-
elopment using controlled interventions (see Supplemen- 
ary Table 4). Here we study the contributions of two
ifferent dietary n-6/n-3 PUFA ratios, namely by increasing 
nd by decreasing this dietary ratio across all developmen-
al stages, to determine how these PUFA ratios can influence
evelopment, cognitive functioning and behavioral expres- 
ion. For these studies, we investigated the developmental 
mpact of PUFA dietary composition in the BTBR mouse in-
red strain, a commonly used ASD mouse model displaying 
he phenotypic features of disturbed social interaction and 
estrictive and repetitive behavior ( McFarlane et al., 2008;
eyza and Blanchard, 2017; Molenhuis et al., 2014; Pearson
t al., 2011 ). In parallel, identical dietary changes in n-6/n-
 PUFA ratios were studied in the C57BL/6J mouse inbred
train, a commonly chosen reference strain (e.g., Molenhuis 
t al., 2014; Moy et al., 2004 ). 
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2. Experimental procedures 

2.1. Animals 

C57BL/6J Mice were obtained from Charles River (Sulzfeld,
Germany) and BTBR T 

+ Itpr3 tf /J (BTBR) mice from The Jack-
son Laboratory (Bar Harbor, USA). These inbred mice were
used for breeding at the University Medical Center Utrecht,
the Netherlands. Their male offspring was generated for the
experiments. Male mice were weaned at postnatal day 21
(P21), ear punched for identification and socially housed
with litter mates in groups of 2–5 mice per cage. All mice
were bred and housed under a 24 h reversed light-dark cy-
cle (white lights on from 19.00 to 7.00 h). All experiments
were approved by the ethical committee for animal experi-
mentation of the University Medical Center Utrecht and per-
formed according to the University Medical Center institu-
tional guidelines that are in full compliance with the Euro-
pean Council Directive (86/609/EEC). 

2.2. Diets 

Food and water was provided ad libitum. Both dams and off-
spring were fed a diet with different n-6/n-3 ratio in chow
(AIN-93G based), depending on the experimental group that
they were assigned to (e.g., either n-3 supplemented or
n-3 deficient diets). Dams started the diet 1–2 weeks be-
fore pairing with a male and it was kept throughout off-
spring’s life. Diets were custom made at Special Diets
Services (SDS; Technilab-BMI bv, Someren, Netherlands).
AIN-93G was used as the control diet (Control) in the ex-
periment (Ratio 8.4:1). The n-3 deficient diet (n-3 Def)
was manufactured by replacing all soya bean oil (7%) by
sunflower oil (7%) (1.1% n-3 and 67.5% n-6; ratio 235:1).
The n-3 supplemented diet (n-3 Supp) was manufactured
by replacing the 7% soya bean oil partially by 5.8695% oil
compound, containing 50% DHA (Docosahexaenoic acid), 7%
EPA (Eicosapentaenoic acid) and 10% GLA (Gamma-linolenic
acid), 19.6 g Vitamin E, ratio 1:1.3) (Vifor Pharma, Glat-
tbrugg, Switzerland). All diets were analyzed after prepa-
ration for fatty acid composition (see Table 1 ). 

2.3. Blood sampling 

Blood samples were taken at 4 developmental time points
(4, 6, 8 and 10 week old mice covering, respectively, pre-
adolescence, adolescence, early adulthood and adulthood
( Molenhuis et al., 2014 ). Samples were collected by making
a small cut into the tail with a razorblade (GEM Scientific,
Bradford, UK). For this procedure, mice were kept under an
inverted grid to prevent stress from fixation. Blood samples
were always taken at the same time of the day. 

First, blood was collected on special Spot Saver Cards
(PerkinElmer 226 Spot Saver Cards, Whatman, GE Health-
care, UK) treated with antioxidant (Butylated hydroxy-
toluene (BHT)) (Sigma, Dorset, UK) for fatty acid analyses.
After a 3h drying period at room temperature, cards were
stored in foil bags (Whatman, GE Healtcare, UK) with desic-
cant in the −20 °C freezer until analyses. Second, blood was
collected on Blood Glucose Test strips to measure Glucose
levels with a Glucose measure system (FreeStyle Precision
Neo H, Abbot Diabetes Care, Oxon, UK). 

2.4. Lipid extraction and fatty acid analysis on 

blood spots 

Dried blood spots were automatically treated with a PAL
HTX- xt robot, which prepares and purifies Fatty Acid Methyl
Esters (FAME). FAME was then used for Gas-liquid chro-
matography (GLC) using a ThermoFisher Trace GC 2000
(ThermoFisher, Hemel Hempstead, UK) equipped with a
fused silica capillary column (ZBWax, 60 m × 0.32 × 0.25 mm
i.d.; Phenomenex, Macclesfield, UK) with hydrogen as car-
rier gas and using on-column injection. The temperature
gradient was from 50 to 150 °C at 40 °C/min, then to 195 °C
at 1.5 °C/min and finally to 220 °C at 2 °C/min. Individual
methyl esters were identified by reference to published
data ( Ackman et al., 1980; Bell et al., 2011 ). Data were col-
lected and processed using the Chromcard for Windows (ver-
sion 2.00) computer package (Thermoquest Italia S.p.A., Mi-
lan, Italy). 

2.5. Lipidomics 

Brain dissection was performed on P21 BTBR. Mice were de-
capitated and brains were quickly removed and frozen on
dry ice. The brain was stored in the −80 °C freezer un-
til use. Lipids were extracted from 5% brain homogenates
in PBS according to the method of Bligh and Dyer ( Bligh
and Dyer, 1959 ). Separation of polar classes was performed
as described elsewhere ( Jeucken and Brouwers, 2016 ) In
brief, lipids were injected in 10 μL of chloroform/methanol
(1:1, v/v) on a Kinetex HILIC column (Phenomenex, Tor-
rance, CA). Elution was performed with a gradient from
ACN/acetone (9:1, v/v) to ACN/H2O (7:3, v/v). Eluting
phospholipids were detected by mass spectrometry using
positive mode atmospheric pressure chemical ionization and
intensities were used for analysis. For ether linked lipid
species, the plasmalogen subclass was assumed. 

2.6. Behavioral procedures 

Before each behavioral task, animals were transferred to
the test-room and habituated for at least one hour. All mice
were tested from early adolescence until adulthood. The
order of the experiments is similar to the order of exper-
iments described below. During development, mice were
tested once per time point (4, 6 and 8 weeks old) in the
same set-up. From 10 weeks on mice were exposed to a
behavioral test battery. The order of experiments was iden-
tical to the order mentioned below. No more than 2 exper-
iments were performed in the same week. For social ex-
periments, there was 1 week in between. After each trial
in each experiment, the set-up was cleaned using Trigene
solution (0.5%; Tristel Solutions Ltd, UK). 
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Table 1 The dietary composition of each individual diet. Results are averages of multiple batches of chow. 

Basic dietary composition Control n-3 Supp n-3 Def 

Maize starch 39,75 39,75 39,75 
Casein 20 20 20 
Maltodextrin 13,2 13,2 13,2 
Sucrose 10 10 10 
Cellulose 5 5 5 
Mineral mix 3.6 3.6 3.6 
Vitamin mix 1 1 1 
L-cystine 0,3 0,3 0,3 
Choline Bitartrate 0,25 0,25 0,25 
Antioxidant. Vitamin E 
FAT 7,9 8,3 8 

Caloric content (Kcal/g) 3.895 3.896 3.893 

Result as % in the diet 
(actual fatty acids) Name 

Result as % in 
the diet 

Result as % in 
the diet 

Result as % in 
the diet 

C18:1 (n6) cis cis-12-Octadecanoic Acid 0,001 0,002 0,001 
C18:1 (n6) trans Trans-12-Octadecanoic Acid 0,001 0,003 0,001 
C18:2 (n6) cis Linoleic Acid 3,583 1,641 4,022 
C18:2 (n6) trans Trans Linolelaidic Acid 0,001 0,001 0,001 
C18:3 (n3) cis Alpha-Linolenic Acid (ALA) 0,418 0,102 0,014 
C18:3 (n6) cis Gamma-linoleic Acid (GLA) 0,001 0,108 0,001 
C18:4 (n3) cis Stearidonic Acid 0,001 0,018 0,001 
C20:2 (n6) cis Cis-11,14-Eicosadienoic Acid 0,003 0,020 0,001 
C20:3 (n3) cis Cis-11,14,17-Eicosatrienoic Acid 0,001 0,015 0,001 
c20:3 (n6) cis Cis-8,11,14-Eicosatrienoic Acid 0,001 0,008 0,001 
C20:4 (n3) cis Cis-8,11-14,17-Eicosatetraenoic 

Acid 
0,001 0,027 0,001 

C20:4 (n6) cis Arachidonic Acid 0,008 0,108 0,002 
C20:5 (n3) Cis Eicosapentaenoic Acid (EPA) 0,008 0,354 0,007 
C22:2 (n6) cis Docosadienoic Acid 0,001 0,303 0,001 
C22:4 (n6) cis Docosatetraenoic Acid 0,001 0,018 0,001 
C22:5 (n6) cis cis-4,7,10,13,16- 

Docosapentaenoic 
Acid 

0,001 0,150 0,001 

C22:5 (n3) cis Docosapentaenoic Acid (DPA) 0,001 0,106 0,001 
C22:6 (n3) cis Docosahexaenoic Acid (DHA) 0,005 2,125 0,010 

Total unknown 0,063 0,220 0,061 
Omega-3 FA 0,433 2,747 0,031 
Omega-6 FA 3,592 2,073 3,988 
Ratio 8.39: 1 1: 1.33 235.29: 1 
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.7. General measures 

nset of puberty and bodyweight and length were measured 
uring development at three different developmental time 
oints (4, 6 and 8 weeks old) and at adulthood (10 weeks
ld). Onset of puberty was determined by assessing the pro-
ression of balano-preputial separation (BPS) and scored as 
ither 0 (no separation), 1 (separation but not full) or 2 (full
eparation). Body length was measured from the tip of the
ose to the start of the tail. 

.8. During development 

.8.1. Extended SHIRPA screen (eSH) 
his screen has been described elsewhere ( Molenhuis et al.,
014 ). In short, mice were first placed in a circular jar
nd visually observed. Subsequently, the animal was trans- 
erred to a Macrolon Type III cage and video recorded for
utomated locomotor activity tracking during 5 min (Etho- 
ision 9.0, Noldus Information Technology, Wageningen, The 
etherlands). Afterwards, the video was manually scored 
or grooming behavior using The Observer XT 10.5 (Noldus
nformation Technology, Wageningen, The Netherlands). 

.8.2. Rota-Rod (RR) 
he Rota-Rod (47600, Ugo Basile, Gemonio, Italy) appara- 
us was used to assess motor coordination and performance.
he rotating rod was set to accelerate from 4 to 64 rpm in
 min and the time on the rod is a measure for (sensori-
motor coordination and balance capacity. The trial was ter-
inated when a mouse fell off or had 2 consecutive turns
rasping the rod. 
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diet. 
2.9. In adulthood 

2.9.1. Open field (OF) 
Spontaneous locomotor activity in a novel environment was
measured by exposing mice to an open field test. Animals
were placed in a circular arena for 15 min. The OF arena
had a diameter of 80 cm that, for the analysis, was virtu-
ally divided in three equally spaced zones (outer, middle
and center zone). Locomotor activity was assessed by video
tracking software (Ethovision 7.0, Noldus Information Tech-
nology, Wageningen, The Netherlands). 

2.9.2. Elevated plus maze (EPM) 
Anxiety-related behavior was assessed in the elevated plus
maze test based on the natural tendency of rodents to
avoid open spaces. Mice were tested on the apparatus,
75 cm above the floor, for 5 min. This was recorded by video
tracking software (Ethovision 7.0, Noldus Information Tech-
nology, Wageningen, The Netherlands). Time spent on and
numbers of entries into each arm, as well as the locomotor
activity were measured. Time spent in the arm was mea-
sured as the time the animal was inside the arm with all
four paws. 

2.9.3. Social interest 
Mice were allowed to habituate to a clean transparent
Macrolon Type II cage with bedding (Tecniplast, Milan, Italy).
After 5 min they had a 2-min exposure to a male stimulus
animal (A/J inbred strain). This experiment was repeated
after 5 min (T5) and 24 h (T24). The time spent exploring
the animal was manually recorded using The Observer XT 10
(Noldus Information Technology, Wageningen, The Nether-
lands). 

2.9.4. Home cage screen (HC) 
Automated home cage recordings were made to measure
novelty-induced and baseline behaviors ( Kas et al., 2008 ).
During the experiment of 5 consecutive days, animals are
housed individually and total food intake is measured.
The experiment was performed as previously described
( Molenhuis et al., 2014 ). 

2.9.5. Food burying task 

This task assessed the ability of mice to smell volatile odors.
Mice were food restricted 24 h before the experiment. After
5 min habituation to the test-environment, Macrolon Type
III cages (Tecniplast, Milan, Italy) with double standard bed-
ding material, mice were placed in a clean similar cage with
1 piece of chow hidden underneath the bedding material, in
one of the corners, approximate depth was the middle of
the bedding. The time to find the buried piece of chow was
measured. 

2.9.6. Set shifting paradigm 

Mice were required to learn the location of a hidden food re-
ward in one of two cups in the test cage (see supplementary
Experimental Procedures). 
2.10. Statistical analysis 

Dietary differences in task parameters were determined
using one-way ANOVA (owANOVA). For repeated measure-
ments, a repeated measures ANOVA (rmANOVA) was per-
formed with ‘time’ as within-subjects factor and ‘strain’
as between-subjects factor. In case of a significant p -value,
post-hoc comparisons were performed using an owANOVA.
Not normally distributed data was analyzed using General
Linear Measures. Values of 3 × SD above or below the mean
were treated as statistical outliers and excluded from fur-
ther analysis (BTBR; 7 values, BL6; 10 values). SPSS 23.0
for Windows was used for analyses. For lipidomics analyses
data processing was performed with XCMS under R version
3.3.2 ( Smith et al., 2006; Tautenhahn et al., 2008 ) and prin-
cipal component analysis was performed with the R package
pcaMethods ( Stacklies et al., 2007 ). 

3. Results 

3.1. PUFA ratios in the body 

Mice exposed to a n-3 deficient or n-3 supplemented di-
ets showed significant changes in their blood and brain n-
6/n-3 ratios when compared to mice exposed to the con-
trol diet (BTBR; p = 0.000, BL6; p = 0.000, Fig. 1 (A) and
(B); detailed statistics Supplementary Table 1). The n-3
deficient diet induced the expected increase in n-6/n-3
PUFA ratio, whereas the n-3 supplemented diet induced
the expected decrease in n-6/n-3 PUFA ratio when com-
pared to control diet. The average ratios given in diet
(Control (8.4:1), n-3 supplementation (1:1.3) and n-3 de-
ficient (235:1)) were rather similar to the ratios found in
whole blood for both BTBR (Control (7.8:1), n-3 supple-
mentation (2.6:1) and n-3 deficient (88.9:1)) and BL6 (Con-
trol (6.5:1), n-3 supplementation (2.1:1) and n-3 deficient
(88.5:1)). 

To establish whether the different diets induced changes
in brain lipid composition prior to the onset of behav-
ioral and cognitive studies, brain homogenates from twelve
BTBR mice (four mice per diet) were extracted and the
lipid extract was subjected to lipidomic analysis by Liq-
uid chromatography – Mass spectrometry(LC/MS) analysis.
This resulted in the detection of approximately 300 lipid
species. Subsequent principal component analysis of these
lipidomes showed a clear distinction to be present be-
tween these three groups ( Fig. 1 (C), left panel). Principal
component 1 (PC-1) accounted for 80% of the total vari-
ance in these lipidomes and was found to correspond di-
rectly to the n-6/n-3 PUFA ratio. The brain lipidomes in
the mice fed with the n-3 supplemented diet had notable
more similarity to the brain lipidomes obtained with the
control diet (groups in relatively close proximity), whereas
the n-3 deficient diet resulted in a very dissimilar lipidome
as can be concluded from the remoteness of these sam-
ples from the control diet lipidomes and, in particular,
the n-3 adequate diet ( Fig. 1 (C)). The second principal
component, PC-2, accounted for only 8% of total variance
in all samples and did not have any obvious relation to
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Fig. 1 Dietary n-6/n-3 ratios were reflected in blood samples and brain tissue. (A) and (B) PUFA blood plasma changes in BTBR (A) 
and BL6 (B) mice exposed to dietary interventions. (C) and (D) Principal Component Analyses (PCA) of brain polar lipid composition 
in BTBR following dietary interventions. Resulting scores for Principal Components 1 and 2 (PC-1 and PC-2) are depicted in panel 
C, whereas the loadings of individual lipid species on PC-1 and PC-2 are depicted in the loadings plot in panel D. Lipid species are 
color coded based on their lipid class. A tailing ‘ p ’ in the lipid name indicates a plasmalogen species. N = 4–11 (details Suppl. Table 
1). Error bars are depicted as SEM. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001. 
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At a more detailed level, the lipids that contributed 
ost to the differences in PC-1 were mainly polyunsatu- 
ated Phosphatidylethanolamine (PE) species (visible in the 
CA loading plot: Fig. 1 (D)). The lipidomes from the n-3
eficient group were enriched in PE 40:5, Phosphatidylser- 
ne (PS) 40:5 and PE 38:4 (located at the far-right side).
S/MS (MS2) of these lipid species revealed that they were 
ainly composed of the n-6 PUFA containing lipid species PE 
8:0/22:5, PS 18:0/22:5 and PE 18:0/20:4, respectively. The 
ncrease of these n-6 species in the n-3 deficient group was
t the expense of the corresponding n-3 species located at
he left of the loadings plot: PE 18:0/22:6 (depicted as PE
0:6), PS 18:0/22:6 (PS 40:6) and PE 18:0/20:5 (PE 38:5),
espectively. A similar replacement of PUFA was observed 
n the main ether lipid species: the increased abundance of
E 40:5p (i.e., the plasmalogen PE 18:0/22:5) and PE 38:5p 
the plasmalogen PE 16:0/22:5) at the expense of PE 40:6p 
i.e., the plasmalogen PE 18:0/22:6) and PE 38:6p (the plas- 
alogen PE 16:0/22:6). 
.2. Physical development 

ongitudinal behavioral assessment across developmental 
tages (weeks 4, 6, 8, and 10) revealed that dietary inter-
ention influenced body size development in both strains. 
n BTBR the n-3 supplemented diet reduced bodyweight 
 p = 0.000), whereas in BL6 both n-3 supplemented as
ell as n-3 deficient interventions reduced bodyweight 

 p = 0.000) ( Fig. 2 (A) and (B)) the n-3 supplemented diet re-
uced body length in BTBR ( p = 0.000) and BL6 ( p = 0.000)
 Fig. 2 (C) and (D)). Dietary intervention did not alter glu-
ose levels (BTBR; p = 0.079, BL6; p = 0.119, Fig. 2 (E) and
F)), suggesting that the changes in body weight and body
ength were not related to metabolic effects. In addi-
ion, the n-3 deficient diet increased juvenile brain weight
n BTBR ( p = 0.000, Fig. 2 (G)) but had no effect in BL6
 p = 0.956, Fig. 2 (H)). Both diets delayed puberty onset in
TBR ( p = 0.001, Supplementary Table 2), whereas the n-3
upplemented diet delayed puberty onset in BL6 ( p = 0.000,
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Fig. 2 N-3 PUFA intervention induced developmental changes in body weight and body length. (A) N-3 supplemented BTBR reduced 
bodyweight. (B) N-3 supplemented and deficient BL6 reduced bodyweight. (C) and (D) N-3 supplemented diet reduced body length 
in BTBR and BL6. (E) and (F) Glucose levels during development were not affected by diet in BTBR and BL6. (G) Brain weight is 
higher following chronic n-3 deficiency in BTBR. (H) Brain weight was not affected by diet in BL6. (I) Diet had no effect on food 
intake in BTBR. (J) The n-3 supplemented diet lowered food intake levels only in BL6. N = 4–20 (Details Suppl. Table 1). Error bars 



Chronic dietary changes in n-6/n-3 polyunsaturated fatty acid ratios cause developmental delay 23 

S
d
i  

a
l
m
f
b

3

C
i  

d
e  

s
p
b  

F  

l  

f

3

D
n
d
p  

r
t  

c
b  

F

3

A
t
t
i  

d
b  

3

D
m
a  

a
m
B  

r  

(  

t
t
i  

F  

s

p  

s
l  

v  

(  

w  

s  

c  

I  

t
p

3

D  

a  

B  

E  

p

4

T  

P  

(  

n  

v
a  

m  

b
t  

s  

a
d  

t  

t  

t  

L  

r  

t  

d  

t  

e
b  

h  

m  

n
d
f  

m  

d
 

o
3  

f  

o  

s  

r
t  

d

upplementary Table 3). The n-3 supplemented diet re- 
uced food intake during the 5-day home cage experiment 
n BL6 mice ( p = 0.000) but not in BTBR ( p = 0.104, Fig. 2 (I)
nd (J)). In contrast to measures of puberty onset, body 
ength and body weight, all mice showed normal develop- 
ent of reflexes, muscle strength, and sensory responses 
ollowing chronic dietary interventions (Supplementary Ta- 
les 2 and 3). 

.3. Social behavior 

hronic intake of an n-3 deficiency diet decreased social 
nterest in adult BTBR ( p = 0.002, Fig. 3 (A)) and both n-3
eficient or n-3 supplemented diets decreased social inter- 
st in BL6 ( p = 0.012, Fig. 3 (B)). The latter being studied in a
econd cohort of BL6 mice showing comparable results (Sup- 
lementary Figure 1). Both diets did not change the capa- 
ility to smell a food cue (BTBR; p = 0.463, BL6; p = 0.084,
ig. 3 (C) and (D)), indicating that lack of odor perception is
ikely not the cause to the reduced levels of social interest
ollowing dietary interventions. 

.4. Repetitive and rigid behavior 

ietary intervention had no effect on behavioral and cog- 
itive flexibility. Grooming behavior during development 
id not change with intervention in both strains (BTBR; 
 = 0.411, BL6; p = 0.262, Fig. 3 (E) and (F)). Furthermore,
eversal learning, assessed in a compound discrimination 
ask during adulthood, were not affected in both lines, indi-
ating that levels of cognitive flexibility were not affected 
y dietary intervention (BTBR; p = 0.064, BL6; p = 0.219,
ig. 3 (G) and (H)). 

.5. Discrimination capacity and reversal learning 

 n-3 supplemented and deficiency diet did not affect cogni- 
ive performance in an odor and context specific set-shifting 
ask during adulthood. Both simple and complex discrim- 
nation tasks (SD and CD), as well as an extensive intra-
imensional (IDS I-IVrev) set-shifting task were not affected 
y diet (BTBR; p = 0.245, BL6; p = 0.219, Fig. 3 (G) and (H)).

.6. Locomotor behavior 

ietary intervention had no effect on the development of 
otor balance and sensorimotor functioning in the acceler- 
ting Rota-Rod (BTBR; p = 0.711, BL6; p = 0.691, Fig. 4 (A)
nd (B)). In addition, no dietary effects were observed on 
otor activity levels during development (BTBR; p = 0.221, 
L6; p = 0.027, Fig. 4 (C) and (D)). An n-3 supplemented diet
educed the amount of cage exploration in early life in BL6
 p = 0.000) but not in BTBR ( p = 0.304) ( Fig. 4 (E) and (F)). In
he automated home cage environment, dietary interven- 
ion had no effect on light/dark cycle behavioral rhythmic- 
ty in BTBR (Light phase; p = 0.638, Dark phase; p = 0.134,
ig. 4 (G)) but in BL6 mice this effect was only in the n-3
upplemented versus n-3 deficient diet comparison (Light 
hase; p = 0.008, Dark phase; p = 0.023, Fig. 4 (H)). The n-3
upplemented diet reduced novelty-induced motor activity 
evels during the first hour in the automated home cage en-
ironment (BTBR; p = 0.000, BL6; p = 0.000, Fig. 5 (A) and
B)). A n-3 supplemented versus n-3 deficient diet effect
as observed in the open field (OF) in BL6, where in both
trains there was no dietary effect when compared to the
ontrols (BTBR; p = 0.585, BL6; p = 0.017, Fig. 5 (C) and (D).
n the elevated plus maze (EPM), no effects of dietary in-
ervention on motor activity levels were observed (BTBR; 
 = 0.985, BL6; p = 0.408, Fig. 5 (E) and (F)). 

.7. Anxiety-related behavior 

ietary changes in n-6/n-3 PUFA ratio did not induce
nxiety-like behavior in both OF (time spent in center zone:
TBR; p = 0.656, BL6; p = 0.189, Fig. 5 (G) and (H)) and the
PM (time spent in sheltered arms: BTBR; p = 0.492, BL6;
 = 0.624, Fig. 5 (I) and (J)). 

. Discussion 

his study showed that chronic dietary changes in n-6/n-3
UFA ratio have a strong impact during mouse development
 Table 2 ). Chronic pre- and postnatal n-3 supplemented or
-3 deficient dietary interventions resulted in a strong de-
elopmental delay, reflected by a decrease in bodyweight 
nd body length, and delayed puberty onset in two distinct
ouse inbred strains. During adulthood, a wide variety of
ehavioral and cognitive phenotypes were studied. Despite 
he strong effects on physical development and puberty on-
et, dietary interventions did not lead to major changes in
dult behavioral and cognitive performance. Interestingly, 
uring adulthood we only observed a reduction in social in-
erest in both strains. Thus, while the fast growing litera-
ure is suggesting a potential beneficial role of n-3 PUFAs in
he diet ( Bernardi et al., 2012; Fedorova and Salem, 2006;
uchtman and Song, 2013; Pietropaolo et al., 2014 ), the cur-
ent study shows that chronic pre- and postnatal exposure
o altered n-6/n-3 PUFA ratios may have negative impact on
evelopment and the expression of adult social behavior in
wo inbred strains of mice. These findings suggest that di-
tary n-3 PUFA supplementation should not be considered as 
eneficial in early developmental stages, in contrast to what
as been claimed in literature ( Bernardi et al., 2012; Lucht-
an and Song, 2013 ). In addition, PUFA interventions should
ot be considered for the treatment of neurodevelopmental 
isorders, such as Autism Spectrum Disorders (ASD), unless 
uture studies are able to indicate that these interventions
ay be beneficial to compensate for potential shifted en-
ogenous PUFA levels in these disorders. 
How dietary changes in n-6/n-3 PUFA ratio lead to devel-

pmental delay remains to be investigated. Interestingly, n- 
 deficient and n-3 supplementation led to different brain
atty acid compositions ( Fig. 1 (D)), and both led to devel-
pmental delay ( Table 2 ), indicating that brain lipid compo-
ition changes (irrespective of their direction) may be dis-
uptive for normal developmental processes. Unfortunately, 
here is a large heterogeneity in literature on the effects of
ietary n-6/n-3 PUFA intervention on development of the 
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Fig. 3 Social, repetitive and cognitive behavior during adulthood. (A) N-3 deficiency reduced social interest in BTBR at 3 time- 
points. (B) n-3 supplemented and n-3 deficient fed BL6 reduced social interest at 2 timepoints. (C) and (D). The ability to smell 
was not affected in BTBR and BL6. E. No differences in time spent grooming with each diet in BTBR and BL6. (G) and (H). Cognitive 
flexibility was not affected in BTBR and BL6 following dietary interventions (abbreviations: simple discrimination (SD), complex 
discrimination (CD), Intradimensional shift (IDS), 4th Intradimensional reversed shift (IDS IV-rev). n = 5–20 (Details Suppl. Table 1). 
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Fig. 4 Development of locomotor behavior. (A) Rota-Rod performance was not affected in BTBR and BL6. (C) and (D). No difference 
in distance moved during development in BTBR and BL6. (E) No difference in rearing behavior during development in BTBR. (F) N-3 
supplementation fed BL6 reduced rearing behavior during early development. (G) (H). No difference in distance moved during 4 
days in BTBR and BL6 compared to the control group. N = 9–16 (Details Suppl. Table 1). Error bars are depicted as SEM. ∗p < 0.05, 
∗∗p < 0.01, ∗∗∗p < 0.001. 
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Fig. 5 Locomotor behavior and anxiety during adulthood. (A) and (B). The n-3 supplemented diet reduced novel activity in the 
home cage in BTBR and BL6. (C) and (D). No difference in open field activity levels in BTBR and BL6. (E) and (F) No difference in 
motor activity levels of BTBR and BL6 in the EPM (G) and (H). No effect of diet on time spent in zones in open field in BTBR and BL6. 
(I) and (J) No difference in time spent in arms in EPM in BTBR and BL6. N = 10–16 (Details Suppl. Table 1). Error bars are depicted as 
SEM. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001. 



Chronic dietary changes in n-6/n-3 polyunsaturated fatty acid ratios cause developmental delay 27 

Table 2 Heatmap of the effects of chronic dietary n-6/n-3 PUFA ratio changes observed in the present study. The heatmap 
visualizes all measured effects of PUFAs on the (developmental) outcome of BTBR and C57BL/6J mice. The darker the color, the 
more significant the effect of PUFAs on this measure. Red = negative effect (i.e., quantitative reduction; qualitative negative 
effect in case of brain weight and puberty onset), Beige = no effect. 
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ody and reflexes ( Amusquivar et al., 2000; Bongiovanni 
t al., 2007; Carrié et al., 2000; Fountain et al., 2008; 
ilakivi-Clarke et al., 1997; Korotkova et al., 2005, 2002; 
amptey and Walker, 1976; Pietropaolo et al., 2014; Santil- 
án et al., 2010; Troina et al., 2010; Wainwright et al., 1997;
eiser et al., 2016; Xiang and Zetterström, 1999 ) which 
ould, in part, be due to differences in study design. Inter-
stingly, and in line with our findings, several studies found
hat PUFA dietary interventions either led to body weight 
hanges, reduced body length, or delayed puberty onset, 
ndicating that PUFA interventions may affect developmen- 
al delay (see supplementary Table 4). However, none of 
hese studies assessed all these three measurements at dif- 
erent development stages. Therefore, our study is the first 
howing that chronic PUFA interventions with n-3 supple- 
entation leads to developmental delay on the basis of all 
hree measures (body weight, body length and puberty on- 
et) that were all measured at four different time points 
uring development. In addition, we did confirm that the 
evelopmental delay was not a consequence of affected lo- 
omotor or repetitive behavior in studies with similar and 
ifferent intervention durations and ratios ( Fortunato et al., 
016; Fountain et al., 2008; Pietropaolo et al., 2014; Wu 
t al., 2016 ) and literature suggests that changed behavior
eems to be more affected by PUFA ratio than individual lev-
ls ( Korotkova et al., 2005 ). Several studies indicated path-
ays through which this developmental delay may be es-
ablished. First, PUFA ratio changes may lead to metabolic
hanges and thereby altering body gain ( Korotkova et al.,
005 ). We, and others, found no changes in glucose lev-
ls following PUFA interventions ( Bjursell et al., 2014; Ko-
otkova et al., 2005, 2002 ), indicating that a change in n-
/n-3 ratio has no direct effect on glucose levels. However,
 reduction in fasting insulin levels was previously reported,
ithout affecting blood glucose levels ( Bjursell et al., 2014;
orotkova et al., 2005, 2002 ). Next to metabolic changes,
hanging the n-6/n-3 ratio may also influence signal trans-
uction as PUFAs are ligands for peroxisome proliferator-
ctivated receptors (PPARs) ( Abbott, 2009 ). Expression of
ifferent PPARs are related to the n-6/n-3 ratio in diet
 Hajjar et al., 2012; Tian et al., 2011 ). However, for the
urrent study the influence of PUFAs on PPARs remains to be
nvestigated. Third, PUFA ratio changes may result in inhi-
ition of growth, as the present study found both shorter
nd lighter animals, as well as a delayed puberty onset.
he reduced food intake in the C57BL6J group may be the
esult of taste preferences, but our other experimental 
roups on similar dietary intervention did not show this re-
uced food intake. Previous studies suggest that n-3 supple-
entation feedings reduced length ( Santillán et al., 2010 ),
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body fat mass ( Troina et al., 2010 ) and subsequent related
changes in puberty onset ( Santillán et al., 2010; Troina et
al., 2010 ), but were not able to obtain similar findings on
body weight development, despite the rather similar exper-
imental design and interventions. Lastly, the developmental
delay could be due to a change in cell proliferation; liter-
ature suggests that neurogenesis is altered in the embry-
onic rat brain when exposed to a high n-6/n-3 PUFA ratio
( Coti Bertrand et al., 2006; Kawakita et al., 2006 ). On the
contrary, the brain weight differences in the current study
were only reported in the n-3 depleted BTBR, without any
developmental delay. Brain volume is reduced and cell mi-
gration is transiently delayed when given an n-3 deficient
diet, but the sensitive period for these PUFA effects is un-
known yet ( Bernardi et al., 2012; Coti Bertrand et al., 2006;
Yavin et al., 2010 ). It is well known that the last trimester
of pregnancy and first 6 months of human life are most im-
portant for n-3 PUFA uptake ( Bernardi et al., 2012; Guesnet
and Alessandri, 2011; Hamosh and Salem Jr., 1998; van Elst
et al., 2014 ). However, up to now, there is no consensus on
which pre- or postnatal time point influences the develop-
mental delay the most ( Amusquivar et al., 2000; Moriguchi
and Salem, 2003 ), especially since not many studies investi-
gated all three points of developmental delay; bodyweight,
length and puberty onset; in one experiment (Supplemen-
tary Table 4) Given these points, we propose that especially
the timing of PUFA intervention and the effects on fat mass
and cell proliferation should be considered in future re-
search to investigate the impact of PUFAs on developmental
processes. 

It is remarkable that dietary changes in n-6/n-3 PUFA ra-
tio have very limited impact on adult behavioral and cog-
nitive performance, while the treated mice in the present
study all suffered from a significant developmental delay
before reaching adulthood. These findings suggest that early
developmental impairments can be compensated for when
reaching adulthoods. Alternatively, dietary changes in n-
6/n-3 PUFA ratio may lead to developmental delay during
the early stages in life, but may have beneficiary effects
on outcome during adulthood; providing a possible explana-
tion why animals on a n-3 supplemented of n-3 deficient diet
catch up later in life. Furthermore, it is remarkable that an-
imals with a developmental delay showed normal levels of
cognitive functioning in our study, although this was not con-
firmed in literature ( Carrié et al., 2000; Catalan et al., 2002;
Fountain et al., 2008; Greiner et al., 1999; Lamptey and
Walker, 1976; Moriguchi and Salem, 2003; Robertson et al.,
2017; Weiser et al., 2016; Wu et al., 2016; Yamamoto et al.,
1988; Yonekubo et al., 1993 ), and for this reason it should
be noted that the experimental design of all these studies
were different to each other (supplementary Table 4). Next
to that, we found normal adult behavioral performance, ex-
cept for their levels of repeatedly measured adult social be-
havior. These findings may suggest that chronically altering
n-6/n-3 PUFA ratios may affect brain circuitry involved in
social behavioral regulation. Furthermore, it may also sug-
gest that the developmental delay leads to disrupted so-
cial behavior during the juvenile stage that is known to lead
to abnormal adult social behavioral expression ( Hol et al.,
1999 ). On the contrary, abnormal developmental delay led
to normal adult social behavior in n-3 depleted BL6, whilst
no developmental delay led to abnormal social behavior in
n-3 depleted BTBR. The latter group did have a changed
brain volume, which may result in abnormal social behav-
ior. These limited effects of dietary treatment in adulthood
indicate that additional experiments are needed to further
investigate the underlying causes on the relation between
developmental delay and the limited behavioral deficits in
adulthood. 

Thus far, no other animal studies using PUFA interventions
have reported on the strong delay in development that we
observed in the present study. This could be a consequence
of the chronic nature of our intervention strategy (both pre-
and post-natal) in combination with relative strong differ-
ences in PUFA ratios when compared to about half of the
earlier published studies (see supplementary Table 4). In
studies with similar high levels of PUFA interventions, no
signs of developmental delay have been reported in a simi-
lar fashion as in the present study (see supplementary Table
4). Most of these studies, however, have not studied phe-
notypes in a longitudinal manner, and have not studied the
onset of puberty, making it very unlikely to find comparable
results to the present study. The differences in body weight
in the present study could not be due to differences in the
caloric content of the three diets, as the caloric contents
are very similar (Control diet: 3.895 Kcal/g, n-3 depletion
diet: 3.893 Kcal/g; n-3 supplementation 3.896 Kcal/g). Sim-
ilar to our observations, studies in humans also observed
that higher intake of omega-3 resulted in a significant body-
weight loss, indicating that PUFA intake alters body compo-
sition in humans as well ( Bender et al., 2014 ). Additional
animal studies with chronic intake of lower PUFA ratios, as
well as studies during which only pre-natal versus only post-
natal PUFA interventions are given will be needed to better
understand the impact of chronic treatment on relatively
high PUFA ratios on developmental delay. 

Together, the current study shows that two very different
mouse inbred strains that are similarly exposed to different
levels of n-6/n-3 PUFA levels both express a developmental
delay and reduced adult social interaction with little behav-
ioral and cognitive effects in later life. This is remarkable,
as the mechanistical data shows that there indeed are very
profound differences between the intervention groups on
the individual fatty acid level in the brain. Even more, these
effects were found regardless of genetic background; the
comparison between BTBR and BL6 has not been described
previously. Future studies should be designed in a similar
manner to increase our knowledge on the particular effects
of dietary n-6/n-3 ratio changes, to independently replicate
the effects from this study, and to be able to develop follow-
up studies investigating the most optimal n-6/n-3 PUFA ra-
tios during pre- and postnatal periods. Indeed, there seems
to be relevance in investigating these dietary effects more
in relation to physical development, such as body compo-
sition and puberty onset, and development of adult social
behavior. Overall, the present findings indicate that chronic
dietary supplementation or depletion of n-3 PUFA’s may not
be beneficial. 
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