71 research outputs found

    Impact of gastrointestinal differences in veterinary species on the oral drug solubility, in vivo dissolution, and formulation of veterinary therapeutics

    Get PDF
    Many gaps exist in our understanding of species differences in gastrointestinal (GI) fluid composition and the associated impact of food intake and dietary composition on in vivo drug solubilization. This information gap can lead to uncertainties with regard to how best to formulate pharmaceuticals for veterinary use or the in vitro test conditions that will be most predictive of species-specific in vivo oral product performance. To address these challenges, this overview explores species-specific factors that can influence oral drug solubility and the formulation approaches that can be employed to overcome solubility-associated bioavailability difficulties. These discussions are framed around some of the basic principles associated with drug solubilization, reported species differences in GI fluid composition, types of oral dosage forms typically given for the various animal species, and the effect of prandial state in dogs and cats. This basic information is integrated into a question-and-answer section that addresses some of the formulation issues that can arise in the development of veterinary medicinals

    Pharmacokinetics and Pharmacodynamics of an Oral Formulation of Apixaban in Horses After Oral and Intravenous Administration

    Get PDF
    Horses with inflammatory and infectious disorders are often treated with injectable heparin anticoagulants to prevent thrombotic complications. In humans, a new class of direct oral acting anticoagulants (DOAC) appear as effective as heparin, while eliminating the need for daily injections. Our study in horses evaluated apixaban, a newly approved DOAC for human thromboprophylaxis targeting activated factor X (Xa). Our goals were to: (1) Determine pharmacokinetics and pharmacodynamics of apixaban after oral (PO) and intravenous (IV) administration in horses; (2) Detect any inhibitory effects of apixaban on ex vivo Equid herpesvirus type 1 (EHV-1)-induced platelet activation, and (3) Compare an anti-Xa bioactivity assay with ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) for measuring apixaban concentrations. In a blinded placebo-controlled cross-over study, five horses received a single dose (0.2 mg/kg) of apixaban or placebo PO or IV. Blood was collected before and at 3 (IV) or 15 (PO) min, 30 and 45 min, and 1, 2, 3, 4, 6, 8, and 24 h after dosing for measuring apixaban UPLC-MS concentrations and anti-Xa activity. Pharmacodynamic response was measured in a dilute prothrombin time (dPT) assay. Flow cytometric EHV-1-induced platelet P-selectin expression and clinical pathologic safety testing were performed at baseline, 2 and 24 h and baseline and 24 h, respectively. We found no detectable apixaban in plasma PO administration. After IV administration, plasma apixaban levels followed a two-compartment model, with concentrations peaking at 3 min and decreasing to undetectable levels by 8 h. The elimination half-life was 1.3 ± 0.2 h, with high protein binding (92–99%). The dPT showed no relationship to apixaban UPLC-MS concentration and apixaban did not inhibit EHV-1-induced platelet activation after IV dosing. Apixaban anti-Xa activity showed excellent correlation to UPLC-MS (r2 = 0.9997). Our results demonstrate that apixaban has no apparent clinical utility as an anticoagulant for horses due to poor oral availability

    Dosing Regimen of Enrofloxacin Impacts Intestinal Pharmacokinetics and the Fecal Microbiota in Steers

    Get PDF
    Objective: The intestinal concentrations of antimicrobial drugs that select for resistance in fecal bacteria of cattle are poorly understood. Our objective was to associate active drug concentrations in the intestine of steers with changes in the resistance profile and composition of the fecal microbiome.Methods: Steers were administered either a single dose (12.5 mg/kg) or 3 multiple doses (5 mg/kg) of enrofloxacin subcutaneously every 24 h. Enrofloxacin and ciprofloxacin concentrations in intestinal fluid were measured over 96 h, and the abundance and MIC of E. coli in culture and the composition of the fecal microbiota by 16S rRNA gene sequencing were assessed over 192 h after initial treatment.Results: Active drug concentrations in the ileum and colon exceeded plasma and interstitial fluid concentrations, but were largely eliminated by 48 h after the last dose. The concentration of E. coli in the feces significantly decreased during peak drug concentrations, but returned to baseline by 96 h in both groups. The median MIC of E. coli isolates increased for 24 h in the single dose group, and for 48 h in the multiple dose group. The median MIC was higher in the multiple dose group when compared to the single dose group starting 12 h after the initial dose. The diversity of the fecal microbiota did not change in either treatment group, and taxa-specific changes were primarily seen in phyla commonly associated with the rumen.Conclusions: Both dosing regimens of enrofloxacin achieve high concentrations in the intestinal lumen, and the rapid elimination mitigates long-term impacts on fecal E. coli resistance and the microbiota

    Antibiotic therapy: principles of treatment and general strategies

    No full text

    Antibiotic therapy: causes of resistance and strategies to manage resistant infections

    No full text

    Treatment of inflammatory conditions: principles of treatment with anti-inflammatory medications, including corticosteroids

    Get PDF
    corecore