3 research outputs found

    Discovery of BMS-641988, a Novel Androgen Receptor Antagonist for the Treatment of Prostate Cancer

    No full text
    BMS-641988 (<b>23</b>) is a novel, nonsteroidal androgen receptor antagonist designed for the treatment of prostate cancer. The compound has high binding affinity for the AR and acts as a functional antagonist <i>in vitro</i>. BMS-641988 is efficacious in multiple human prostate cancer xenograft models, including CWR22-BMSLD1 where it displays superior efficacy relative to bicalutamide. Based on its promising preclinical profile, BMS-641988 was selected for clinical development

    Triphenylethanamine Derivatives as Cholesteryl Ester Transfer Protein Inhibitors: Discovery of <i>N</i>‑[(1<i>R</i>)‑1-(3-Cyclopropoxy-4-fluorophenyl)-1-[3-fluoro-5-(1,1,2,2-tetrafluoroethoxy)­phenyl]-2-phenylethyl]-4-fluoro-3-(trifluoromethyl)­benzamide (BMS-795311)

    No full text
    Cholesteryl ester transfer protein (CETP) inhibitors raise HDL-C in animals and humans and may be antiatherosclerotic by enhancing reverse cholesterol transport (RCT). In this article, we describe the lead optimization efforts resulting in the discovery of a series of triphenylethanamine (TPE) ureas and amides as potent and orally available CETP inhibitors. Compound <b>10g</b> is a potent CETP inhibitor that maximally inhibited cholesteryl ester (CE) transfer activity at an oral dose of 1 mg/kg in human CETP/apoB-100 dual transgenic mice and increased HDL cholesterol content and size comparable to torcetrapib (<b>1</b>) in moderately-fat fed hamsters. In contrast to the off-target liabilities with <b>1</b>, no blood pressure increase was observed with <b>10g</b> in rat telemetry studies and no increase of aldosterone synthase (CYP11B2) was detected in H295R cells. On the basis of its preclinical profile, compound <b>10g</b> was advanced into preclinical safety studies

    Triphenylethanamine Derivatives as Cholesteryl Ester Transfer Protein Inhibitors: Discovery of <i>N</i>‑[(1<i>R</i>)‑1-(3-Cyclopropoxy-4-fluorophenyl)-1-[3-fluoro-5-(1,1,2,2-tetrafluoroethoxy)­phenyl]-2-phenylethyl]-4-fluoro-3-(trifluoromethyl)­benzamide (BMS-795311)

    No full text
    Cholesteryl ester transfer protein (CETP) inhibitors raise HDL-C in animals and humans and may be antiatherosclerotic by enhancing reverse cholesterol transport (RCT). In this article, we describe the lead optimization efforts resulting in the discovery of a series of triphenylethanamine (TPE) ureas and amides as potent and orally available CETP inhibitors. Compound <b>10g</b> is a potent CETP inhibitor that maximally inhibited cholesteryl ester (CE) transfer activity at an oral dose of 1 mg/kg in human CETP/apoB-100 dual transgenic mice and increased HDL cholesterol content and size comparable to torcetrapib (<b>1</b>) in moderately-fat fed hamsters. In contrast to the off-target liabilities with <b>1</b>, no blood pressure increase was observed with <b>10g</b> in rat telemetry studies and no increase of aldosterone synthase (CYP11B2) was detected in H295R cells. On the basis of its preclinical profile, compound <b>10g</b> was advanced into preclinical safety studies
    corecore