38 research outputs found

    Reflectors Made from Membranes Stretched Between Beams

    Get PDF
    Lightweight cylindrical reflectors of a proposed type would be made from reflective membranes stretched between pairs of identically curved and identically oriented end rails. In each such reflector, the curvature of the two beams would define the reflector shape required for the intended application. For example, the beams could be curved to define a reflector of parabolic cross section, so that light incident along the axis of symmetry perpendicular to the cylindrical axis would be focused to a line. In addition, by applying suitable forces to the ends of the beams, one could bend the beams to adjust the reflector surface figure to within a precision of the order of the wavelength of the radiation to be reflected. The figure depicts an example of beams shaped so that in the absence of applied forces, each would be flat on one side and would have a radius of curvature R on the opposite side. Alternatively, the curvature of the reflector-membrane side could be other than circular. In general, the initial curvature would be chosen to optimize the final reflector shape. Then by applying forces F between the beam ends in the positions and orientations shown in the figure, one could bend beams to adjust their shape to a closer approximation of the desired precise circular or noncircular curvature

    Galactic Foreground Constraints from the Python V Cosmic Microwave Background Anisotropy Data

    Get PDF
    We constrain Galactic foreground contamination of the Python V cosmic microwave background anisotropy data by cross correlating it with foreground contaminant emission templates. To model foreground emission we use 100 and 12 μ\mum dust emission templates and two point source templates based on the PMN survey. The analysis takes account of inter-modulation correlations in 8 modulations of the data that are sensitive to a large range of angular scales and also densely sample a large area of sky. As a consequence the analysis here is highly constraining. We find little evidence for foreground contamination in an analysis of the whole data set. However, there is indication that foregrounds are present in the data from the larger-angular-scale modulations of those Python V fields that overlap the region scanned earlier by the UCSB South Pole 1994 experiment. This is an independent consistency cross-check of findings from the South Pole 1994 data.Comment: 15 pages, 1 figure, ApJ accepted versio

    Nanolaminate Membranes as Cylindrical Telescope Reflectors

    Get PDF
    A document discusses a proposal to use axially stretched metal nanolaminate membranes as lightweight parabolic cylindrical reflectors in the Dual Anamorphic Reflector Telescope (DART) - a planned spaceborne telescope in which the cylindrical reflectors would be arranged to obtain a point focus. The discussion brings together a combination of concepts reported separately in several prior NASA Tech Briefs articles, the most relevant being "Nanolaminate Mirrors With Integral Figure-Control Actuators" NPO -30221, Vol. 26, No. 5 (May 2002), page 90; and "Reflectors Made From Membranes Stretched Between Beams" NPO -30571, Vol. 33, No. 10 (October 2009), page 11a. The engineering issues receiving the greatest emphasis in the instant document are (1) the change in curvature associated with the Poisson contraction of a stretched nanolaminate reflector membrane and (2) the feasibility of using patches of poly(vinylidene fluoride) on the rear membrane surface as piezoelectric actuators to correct the surface figure for the effect of Poisson contraction and other shape errors

    Panel options for large precision radio telescopes

    Get PDF
    The Cornell Caltech Atacama Telescope (CCAT) is a 25 m diameter telescope that will operate at wavelengths as short as 200 microns. CCAT will have active surface control to correct for gravitational and thermal distortions in the reflector support structure. The accuracy and stability of the reflector panels are critical to meeting the 10 micron HWFE (half wave front error) for the whole system. A system analysis based upon a versatile generic panel design has been developed and applied to numerous possible panel configurations. The error analysis includes the manufacturing errors plus the distortions from gravity, wind and thermal environment. The system performance as a function of panel size and construction material is presented. A compound panel approach is also described in which the reflecting surface is provided by tiles mounted on thermally stable and stiff sub-frames. This approach separates the function of providing an accurate reflecting surface from the requirement for a stable structure that is attached to the reflector support structure on three computer controlled actuators. The analysis indicates that there are several compound panel configurations that will easily meet the stringent CCAT requirements

    Analysis of the optical design for the SAFIR telelscope

    Get PDF
    SAFIR, the Single Aperture Far Infra Red Observatory, is a very powerful space mission that will achieve background-limited sensitivity in the far infrared-submillimeter spectral region. Many processes of enormous interest to astronomers can best be studied in this wavelength range, but require the demanding combination of high sensitivity, good angular resolution, and spectroscopic capability. SAFIR is a 10m class telescope offering good angular resolution, cooled to below 5 K in order to achieve background-limited sensitivity, and equipped with a complement of large-format cameras and broadband spectrometers. Successful operation of such a facility is critically dependent on achieving the level of sensitivity expected, but this is rendered difficult by potential pickup from unwanted sources of radiation. This problem is exacerbated by the fact that the emission from the optical system itself is minimal due to its low temperature, thus emphasizing the importance of minimizing pickup from unwanted astronomical sources of radiation, including the emission from dust in our solar system (analogous to the zodiacal light, hence "zodi"), and the emission from warm dust in the Milky Way (Galactic "cirrus"). The extreme sensitivity of SAFIR to these unwanted sources of radiation makes it essential to understand the relative sensitivity of the telescope/detector system to radiation coming from angles far outside the main beam, and to develop designs which minimize this pickup. In this paper we analyze in some detail the relative telescope sensitivity (referred to as the antenna pattern by microwave engineers) for different designs of SAFIR. These calculations include edge diffraction from the secondary and primary reflector, and also the effect of blockage by the secondary and blockage and scattering by support legs in a symmetric system. By convolving the antenna pattern with the brightness of the sky due to the zodi and cirrus, we can calculate the power received when the antenna is pointed in any specified direction. We can also compare the undesired pickup for different designs, in particular symmetric vs. asymmetric (off-axis or unblocked) antenna configurations. These considerations are vital for achieving the most efficient SAFIR design possible, in terms of achieving maximum sensitivity while being able to observe over a large fraction of the sky

    The science case and mission concept for the Single Aperture Far-Infrared (SAFIR) Observatory

    Get PDF
    SAFIR is a large (10 m-class), cold (4-10 K) space telescope for wavelengths between 20 microns and 1 mm. It will provide sensitivity a factor of a hundred or more greater than that of Spitzer and Herschel, leveraging their capabilities and building on their scientific legacies. Covering this scientifically critical wavelength regime, it will complement the expected wavelength performance of the future flagship endeavors JWST and ALMA. This vision mission will probe the origin of stars and galaxies in the early universe, and explore the formation of solar systems around nearby young stars. Endorsed as a priority by the Decadal Study and successive OSS roadmaps, SAFIR represents a huge science need that is matched by promising and innovative technologies that will allow us to satisfy it. In exercising those technologies it will create the path for future infrared missions. This paper reviews the scientific goals of the mission and promising approaches for its architecture, and considers remaining technological hurdles. We review how SAFIR responds to the scientific challenges in the OSS Strategic Plan, and how the observatory can be brought within technological reach

    Z-Spec: a broadband millimeter-wave grating spectrometer: design, construction, and first cryogenic measurements

    Get PDF
    We present the design, integration, and first ryogenic testing of our new broad-band millimeter-wave spectrometer, Z-Spec. Z-Spec uses a novel architecture called WaFIRS (Waveguide Far-IR Spectrometer), which employs a curved diffraction grating in a parallel-plate waveguide propagation medium. The instrument will provide a resolving power betwee 200 and 350 across an instantaneous bandwidth of 190-310 GHz, all packaged within a cryostat that is of order 1 meter in size. For background-limited astronomical observations in the 1mm terrestrial window, Z-Spec uses 160 silicon nitride micro-mesh bolometers and the detectors and waveguide grating are cooled to ~0.1 K. Our first cryogenic measurements at 225 GHz show resolving power greater than 200, and the end-to-end throughput is estimated to be greater than 30%, possibly as high as 40%. Z-Spec represents the first systematic approach to cosmological redshift measurement that is not based on optical or near-IR identifications. With its good sensitivity and large bandwidth, Z-Spec provides a new capability for millimeter-wave astrophysics. The instrument will be capable of measureing rotational carbon monoxide line emission from bright dusty galaxies at redshifts of up to 4, and the broad bandwidth insures that at least two lines will be simultaneously detected, providing an unambiguous redshift determination. In addition to Z-Spec's observations over the next 1-3 years, the WaFIRS spectrometer architecture makes an excellent candidate for mid-IR to millimeter-wave spectrometers on future space-borned and suborbital platforms such as SPICA and SAFIR. The concept is dramatically more compact and lightweight than conventional free-space grating spectrometers, and no mirrors or lenses are used in the instrument. After the progress report on Z-Spec we highlight this capability

    Panel options for large precision radio telescopes

    Get PDF
    The Cornell Caltech Atacama Telescope (CCAT) is a 25 m diameter telescope that will operate at wavelengths as short as 200 microns. CCAT will have active surface control to correct for gravitational and thermal distortions in the reflector support structure. The accuracy and stability of the reflector panels are critical to meeting the 10 micron HWFE (half wave front error) for the whole system. A system analysis based upon a versatile generic panel design has been developed and applied to numerous possible panel configurations. The error analysis includes the manufacturing errors plus the distortions from gravity, wind and thermal environment. The system performance as a function of panel size and construction material is presented. A compound panel approach is also described in which the reflecting surface is provided by tiles mounted on thermally stable and stiff sub-frames. This approach separates the function of providing an accurate reflecting surface from the requirement for a stable structure that is attached to the reflector support structure on three computer controlled actuators. The analysis indicates that there are several compound panel configurations that will easily meet the stringent CCAT requirements
    corecore