21 research outputs found
High coherence hybrid superconducting qubit
We measure the coherence of a new superconducting qubit, the {\em
low-impedance flux qubit}, finding s. It is a
three-junction flux qubit, but the ratio of junction critical currents is
chosen to make the qubit's potential have a single well form. The low impedance
of its large shunting capacitance protects it from decoherence. This qubit has
a moderate anharmonicity, whose sign is reversed compared with all other
popular qubit designs. The qubit is capacitively coupled to a high-Q resonator
in a configuration, which permits the qubit's state to be read out
dispersively
A simple all-microwave entangling gate for fixed-frequency superconducting qubits
We demonstrate an all-microwave two-qubit gate on superconducting qubits
which are fixed in frequency at optimal bias points. The gate requires no
additional subcircuitry and is tunable via the amplitude of microwave
irradiation on one qubit at the transition frequency of the other. We use the
gate to generate entangled states with a maximal extracted concurrence of 0.88
and quantum process tomography reveals a gate fidelity of 81%
Efficient measurement of quantum gate error by interleaved randomized benchmarking
We describe a scalable experimental protocol for obtaining estimates of the
error rate of individual quantum computational gates. This protocol, in which
random Clifford gates are interleaved between a gate of interest, provides a
bounded estimate of the average error of the gate under test so long as the
average variation of the noise affecting the full set of Clifford gates is
small. This technique takes into account both state preparation and measurement
errors and is scalable in the number of qubits. We apply this protocol to a
superconducting qubit system and find gate errors that compare favorably with
the gate errors extracted via quantum process tomography.Comment: 5 pages, 2 figures, published versio
Characterization of addressability by simultaneous randomized benchmarking
The control and handling of errors arising from cross-talk and unwanted
interactions in multi-qubit systems is an important issue in quantum
information processing architectures. We introduce a benchmarking protocol that
provides information about the amount of addressability present in the system
and implement it on coupled superconducting qubits. The protocol consists of
randomized benchmarking each qubit individually and then simultaneously, and
the amount of addressability is related to the difference of the average gate
fidelities of those experiments. We present the results on two similar samples
with different amounts of cross-talk and unwanted interactions, which agree
with predictions based on simple models for the amount of residual coupling.Comment: 5 pages, 4 figure
Capacitance free generation and detection of subpicosecond electrical pulses on coplanar transmission lines
Based on a reanalysis of previous work and new experimental measurements, we conclude that the parasitic capacitance at the generation site is negligible for sliding contact excitation of small dimension coplanar transmission lines.Peer reviewedElectrical and Computer Engineerin