34 research outputs found

    Cancer and the Web

    Get PDF
    The applications of functional genomics, proteomics and informatics to cancer research have yielded a tremendous amount of information, which is growing all the time. Much of this information is available publicly on the Internet and ranges from general information about different cancers from a patient or clinical viewpoint, through to databases suitable for cancer researchers of all backgrounds, to very specific sites dedicated to individual genes or molecules. A simple search for ‘cancer’ from a typical Web browser search engine yields more than half a million hits; an even more specific search for ‘leukaemia’ (>40 000 hits) or ‘p53’ (>5700 hits) yields far too many hits to allow one to identify particular sites of interest. This review aims to provide a brief guide to some of the resources and databases that can be used as springboards to home in rapidly on information relevant to many fields of cancer research. As such, this article will not focus on a single website but hopes to illustrate some of the ways that postgenomic biology is revolutionizing cancer research. It will cover genomics and proteomics approaches that have been applied to studying global expression patterns in cancers, in addition to providing links ranging from general information about cancer to specific cancer gene mutation databases

    Small-molecule inhibition of METTL3 as a strategy against myeloid leukaemia.

    Get PDF
    N6-methyladenosine (m6A) is an abundant internal RNA modification1,2 that is catalysed predominantly by the METTL3-METTL14 methyltransferase complex3,4. The m6A methyltransferase METTL3 has been linked to the initiation and maintenance of acute myeloid leukaemia (AML), but the potential of therapeutic applications targeting this enzyme remains unknown5-7. Here we present the identification and characterization of STM2457, a highly potent and selective first-in-class catalytic inhibitor of METTL3, and a crystal structure of STM2457 in complex with METTL3-METTL14. Treatment of tumours with STM2457 leads to reduced AML growth and an increase in differentiation and apoptosis. These cellular effects are accompanied by selective reduction of m6A levels on known leukaemogenic mRNAs and a decrease in their expression consistent with a translational defect. We demonstrate that pharmacological inhibition of METTL3 in vivo leads to impaired engraftment and prolonged survival in various mouse models of AML, specifically targeting key stem cell subpopulations of AML. Collectively, these results reveal the inhibition of METTL3 as a potential therapeutic strategy against AML, and provide proof of concept that the targeting of RNA-modifying enzymes represents a promising avenue for anticancer therapy

    Building a transdisciplinary expert consensus on the cognitive drivers of performance under pressure: An international multi-panel Delphi study

    Get PDF
    IntroductionThe ability to perform optimally under pressure is critical across many occupations, including the military, first responders, and competitive sport. Despite recognition that such performance depends on a range of cognitive factors, how common these factors are across performance domains remains unclear. The current study sought to integrate existing knowledge in the performance field in the form of a transdisciplinary expert consensus on the cognitive mechanisms that underlie performance under pressure.MethodsInternational experts were recruited from four performance domains [(i) Defense; (ii) Competitive Sport; (iii) Civilian High-stakes; and (iv) Performance Neuroscience]. Experts rated constructs from the Research Domain Criteria (RDoC) framework (and several expert-suggested constructs) across successive rounds, until all constructs reached consensus for inclusion or were eliminated. Finally, included constructs were ranked for their relative importance.ResultsSixty-eight experts completed the first Delphi round, with 94% of experts retained by the end of the Delphi process. The following 10 constructs reached consensus across all four panels (in order of overall ranking): (1) Attention; (2) Cognitive Control—Performance Monitoring; (3) Arousal and Regulatory Systems—Arousal; (4) Cognitive Control—Goal Selection, Updating, Representation, and Maintenance; (5) Cognitive Control—Response Selection and Inhibition/Suppression; (6) Working memory—Flexible Updating; (7) Working memory—Active Maintenance; (8) Perception and Understanding of Self—Self-knowledge; (9) Working memory—Interference Control, and (10) Expert-suggested—Shifting.DiscussionOur results identify a set of transdisciplinary neuroscience-informed constructs, validated through expert consensus. This expert consensus is critical to standardizing cognitive assessment and informing mechanism-targeted interventions in the broader field of human performance optimization

    A Role for Polymerase η in the Cellular Tolerance to Cisplatin-Induced Damage

    No full text
    Mutation of the POLH gene encoding DNA polymerase η (pol η) causes the UV-sensitivity syndrome xeroderma pigmentosum-variant (XP-V) which is linked to the ability of pol η to accurately bypass UV-induced cyclobutane pyrimidine dimers during a process termed translesion synthesis. Pol η can also bypass other DNA damage adducts in vitro, including cisplatin-induced intrastrand adducts, although the physiological relevance of this is unknown. Here, we show that independent XP-V cell lines are dramatically more sensitive to cisplatin than the same cells complemented with functional pol η. Similar results were obtained with the chemotherapeutic agents, carboplatin and oxaliplatin, thus revealing a general requirement for pol η expression in providing tolerance to these platinum-based drugs. The level of sensitization observed was comparable to that of XP-A cells deficient in nucleotide excision repair, a recognized and important mechanism for repair of cisplatin adducts. However, unlike in XP-A cells, the absence of pol η expression resulted in a reduced ability to overcome cisplatin-induced S phase arrest, suggesting that pol η is involved in translesion synthesis past these replication-blocking adducts. Subcellular localization studies also highlighted an accumulation of nuclei with pol η foci that correlated with the formation of monoubiquitinated proliferating cell nuclear antigen following treatment with cisplatin, reminiscent of the response to UV irradiation and further indicating a role for pol η in dealing with cisplatin-induced damage. Together, these data show that pol η represents an important determinant of cellular responses to cisplatin, which could have implications for acquired or intrinsic resistance to this key chemotherapeutic agent

    Aneuploid colon cancer cells have a robust spindle checkpoint

    No full text
    Colon cancer cells frequently display minisatellite instability (MIN) or chromosome instability (CIN). While MIN is caused by mismatch repair defects, the lesions responsible for CIN are unknown. The observation that CIN cells fail to undergo mitotic arrest following spindle damage suggested that mutations in spindle checkpoint genes may account for CIN. However, here we show that CIN cells do undergo mitotic arrest in response to spindle damage. Although the maximum mitotic index achieved by CIN lines is diminished relative to MIN lines, CIN cells clearly have a robust spindle checkpoint. Consistently, mutations in spindle checkpoint genes are rare in human tumours. In contrast, the adenomatous polyposis coli (APC) gene is frequently mutated in CIN cells. Significantly, we show here that expression of an APC mutant in MIN cells reduces the mitotic index following spindle damage to a level observed in CIN cells, suggesting that APC dysfunction may contribute to CIN

    The RON Receptor Tyrosine Kinase Promotes Metastasis by Triggering MBD4-Dependent DNA Methylation Reprogramming

    Get PDF
    Metastasis is the major cause of death in cancer patients, yet the genetic and epigenetic programs that drive metastasis are poorly understood. Here, we report an epigenetic reprogramming pathway that is required for breast cancer metastasis. Concerted differential DNA methylation is initiated by the activation of the RON receptor tyrosine kinase by its ligand, macrophage stimulating protein (MSP). Through PI3K signaling, RON/MSP promotes expression of the G:T mismatch-specific thymine glycosylase MBD4. RON/MSP and MBD4-dependent aberrant DNA methylation results in the misregulation of a specific set of genes. Knockdown of MBD4 reverses methylation at these specific loci and blocks metastasis. We also show that the MBD4 glycosylase catalytic residue is required for RON/MSP-driven metastasis. Analysis of human breast cancers revealed that this epigenetic program is significantly associated with poor clinical outcome. Furthermore, inhibition of Ron kinase activity with a pharmacological agent blocks metastasis of patient-derived breast tumor grafts in vivo
    corecore