301 research outputs found

    Is HIV-1 RNA dimerization a prerequisite for packaging? Yes, no, probably?

    Get PDF
    During virus assembly, all retroviruses specifically encapsidate two copies of full-length viral genomic RNA in the form of a non-covalently linked RNA dimer. The absolute conservation of this unique genome structure within the Retroviridae family is strong evidence that a dimerized genome is of critical importance to the viral life cycle. An obvious hypothesis is that retroviruses have evolved to preferentially package two copies of genomic RNA, and that dimerization ensures the proper packaging specificity for such a genome. However, this implies that dimerization must be a prerequisite for genome encapsidation, a notion that has been debated for many years. In this article, we review retroviral RNA dimerization and packaging, highlighting the research that has attempted to dissect the intricate relationship between these two processes in the context of HIV-1, and discuss the therapeutic potential of these putative antiretroviral targets

    Highly diversified multiply drug-resistant HIV-1 quasispecies in PBMCs: a case report

    Get PDF
    © 2008 Quan et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution Licens

    Impact of the 16(th )International Conference on AIDS: can these conferences lead to policy change?

    Get PDF
    This Commentary reflects on the success of the XVI International Conference on AIDS, that was held in Toronto between August 13–18, 2006. Not only was the Conference judged to have been a scientific success, it will probably also be recognized over time as having had important political impact. It is vital that scientists and policy-makers continue to be able to interact at these meetings as part of global efforts to combat the HIV epidemic

    Recovery of fitness of a live attenuated simian immunodeficiency virus through compensation in both the coding and non-coding regions of the viral genome

    Get PDF
    We have analyzed a SIV deletion mutant that was compromised both in viral replication and RNA packaging. Serial passage of this variant in two different T-cell lines resulted in compensatory reversion and the generation of independent groups of point mutations within each cell line. Within each group, single point mutations were shown to contribute to increased viral infectivity and the rescue of wild-type replication kinetics. The complete recovery of viral fitness ultimately correlated with the restoration of viral RNA packaging. Consistent with the latter finding was the rescue of Pr55 Gag processing, also restoring proper virus core morphology in mature virions. These seemingly independently arising groups of compensatory mutations were functionally interchangeable in regard to the recovery of wild type replication in rhesus PBMCs. These findings indicate that viral reversion that overcomes a genetic bottleneck is not limited to a single pathway, and illustrates the remarkable adaptability of lentiviruses

    Role of HIV Subtype Diversity in the Development of Resistance to Antiviral Drugs

    Get PDF
    Despite the fact that over 90% of HIV-1 infected people worldwide harbor non-subtype B variants of HIV-1, knowledge of resistance mutations in non-B HIV-1 and their clinical relevance is limited. Due to historical delays in access to antiretroviral therapy (ART) on a worldwide basis, the vast majority of reports on drug resistance deal with subtype B infections in developed countries. However, both enzymatic and virological data support the concept that naturally occurring polymorphisms among different nonB subtypes can affect HIV-1 susceptibility to antiretroviral drugs (ARVs), the magnitude of resistance conferred by major mutations, and the propensity to acquire some resistance mutations. Tools need to be optimized to assure accurate measurements of drug susceptibility of non-B subtypes. Furthermore, there is a need to recognize that each subtype may have a distinct resistance profile and that differences in resistance pathways may also impact on cross-resistance and the selection of second-line regimens. It will be essential to pay attention to newer drug combinations in well designed long-term longitudinal studies involving patients infected by viruses of different subtypes

    Will drug resistance against dolutegravir in initial therapy ever occur?

    Get PDF
    Dolutegravir (DTG) is a second-generation integrase strand transfer inhibitor (INSTI) and INSTIs are the latest class of potent anti-HIV drugs. Compared to the first generation INSTIs, raltegravir (RAL) and elvitegravir (EVG), DTG shows a limited cross-resistance profile. More interestingly, clinical resistance mutations to DTG in treatment-naive patents have not been observed to this date. This review summarizes recent studies on resistance mutations to DTG and on our understanding of the mechanisms of resistance to DTG as well as future directions for research

    Negative effect of the M184V mutation in HIV-1 reverse transcriptase on initiation of viral DNA synthesis

    Get PDF
    AbstractThe M184V mutation in HIV reverse transcriptase (RT) is associated with high-level resistance against the nucleoside inhibitor lamivudine as well as diminished viral replication capacity. We have previously demonstrated that HIV variants containing the M184V mutation were relatively unable to successfully undergo compensatory mutagenesis following deletion of an A-rich loop located upstream of the primer binding site (PBS). To understand the mechanisms involved, we synthesized viral RNA templates containing different compensatory mutations that were emergent during the long-term culture of the A-rich loop-deleted viruses. These templates were then used in cell-free reverse transcription initiation assays and in tRNA primer placement assays performed with either recombinant wild-type RT or recombinant RT containing the M184V substitution. The results showed that the RNA template that contained the A-rich loop deletion was impaired in ability to initiate reverse transcription and that the presence of the M184V substitution in RT amplified this effect. Clearance from pausing at position +3 during synthesis of viral DNA was identified as a sensitive step in this reaction that could not be efficiently bypassed with the M184V mutant enzyme. Increased efficiency of initiation was seen with the deleted RNA templates that also contained mutations identified in the revertant viruses, provided that these mutations facilitated formation of a competent binary tRNA/RNA complex. These findings provide biochemical evidence that initiation of tRNALys3-primed DNA synthesis is an important rate-limiting step in reverse transcription that correlates with viral replication fitness
    corecore