5,250 research outputs found

    Simulations of closed timelike curves

    Get PDF
    Proposed models of closed timelike curves (CTCs) have been shown to enable powerful information-processing protocols. We examine the simulation of models of CTCs both by other models of CTCs and by physical systems without access to CTCs. We prove that the recently proposed transition probability CTCs (T-CTCs) are physically equivalent to postselection CTCs (P-CTCs), in the sense that one model can simulate the other with reasonable overhead. As a consequence, their information-processing capabilities are equivalent. We also describe a method for quantum computers to simulate Deutschian CTCs (but with a reasonable overhead only in some cases). In cases for which the overhead is reasonable, it might be possible to perform the simulation in a table-top experiment. This approach has the benefit of resolving some ambiguities associated with the equivalent circuit model of Ralph et al. Furthermore, we provide an explicit form for the state of the CTC system such that it is a maximum-entropy state, as prescribed by Deutsch.Comment: 15 pages, 1 figure, accepted for publication in Foundations of Physic

    Numerical Simulations of Radiatively-Driven Dusty Winds

    Full text link
    [abridged] Radiation pressure on dust grains may be an important mechanism in driving winds in a wide variety of astrophysical systems. However, the efficiency of the coupling between the radiation field and the dusty gas is poorly understood in environments characterized by high optical depths. We present a series of idealized numerical experiments, performed with the radiation-hydrodynamic code ORION, in which we study the dynamics of such winds and quantify their properties. We find that, after wind acceleration begins, radiation Rayleigh-Taylor instability forces the gas into a configuration that reduces the rate of momentum transfer from the radiation field to the gas by a factor ~ 10 - 100 compared to an estimate based on the optical depth at the base of the atmosphere; instead, the rate of momentum transfer from a driving radiation field of luminosity L to the gas is roughly L/c multiplied by one plus half the optical depth evaluated using the photospheric temperature, which is far smaller than the optical depth one would obtain using the interior temperature. When we apply our results to conditions appropriate to ULIRGs and star clusters, we find that the asymptotic wind momentum flux from such objects should not significantly exceed that carried by the direct radiation field, L/c. This result constrains the expected mass loss rates from systems that exceed the Eddington limit to be of order the so-called "single-scattering" limit, and not significantly higher. We present an approximate fitting formula for the rate of momentum transfer from radiation to dusty gas through which it passes, which is suitable for implementation in sub-grid models of galaxy formation. Finally, we provide a first map of the column density distribution of gas in a radiatively-driven wind as a function of velocity, and velocity dispersion.Comment: 19 pages, 17 figures, MNRAS in press; some additional discussion compared to previous version, no changes in conclusion

    Extra Shared Entanglement Reduces Memory Demand in Quantum Convolutional Coding

    Get PDF
    We show how extra entanglement shared between sender and receiver reduces the memory requirements for a general entanglement-assisted quantum convolutional code. We construct quantum convolutional codes with good error-correcting properties by exploiting the error-correcting properties of an arbitrary basic set of Pauli generators. The main benefit of this particular construction is that there is no need to increase the frame size of the code when extra shared entanglement is available. Then there is no need to increase the memory requirements or circuit complexity of the code because the frame size of the code is directly related to these two code properties. Another benefit, similar to results of previous work in entanglement-assisted convolutional coding, is that we can import an arbitrary classical quaternary code for use as an entanglement-assisted quantum convolutional code. The rate and error-correcting properties of the imported classical code translate to the quantum code. We provide an example that illustrates how to import a classical quaternary code for use as an entanglement-assisted quantum convolutional code. We finally show how to "piggyback" classical information to make use of the extra shared entanglement in the code.Comment: 7 pages, 1 figure, accepted for publication in Physical Review

    Quantum state cloning using Deutschian closed timelike curves

    Get PDF
    We show that it is possible to clone quantum states to arbitrary accuracy in the presence of a Deutschian closed timelike curve (D-CTC), with a fidelity converging to one in the limit as the dimension of the CTC system becomes large---thus resolving an open conjecture from [Brun et al., Physical Review Letters 102, 210402 (2009)]. This result follows from a D-CTC-assisted scheme for producing perfect clones of a quantum state prepared in a known eigenbasis, and the fact that one can reconstruct an approximation of a quantum state from empirical estimates of the probabilities of an informationally-complete measurement. Our results imply more generally that every continuous, but otherwise arbitrarily non-linear map from states to states can be implemented to arbitrary accuracy with D-CTCs. Furthermore, our results show that Deutsch's model for CTCs is in fact a classical model, in the sense that two arbitrary, distinct density operators are perfectly distinguishable (in the limit of a large CTC system); hence, in this model quantum mechanics becomes a classical theory in which each density operator is a distinct point in a classical phase space.Comment: 6 pages, 1 figure; v2: modifications to the interpretation of our results based on the insightful comments of the referees; v3: minor change, accepted for publication in Physical Review Letter

    Coherent Communication with Continuous Quantum Variables

    Get PDF
    The coherent bit (cobit) channel is a resource intermediate between classical and quantum communication. It produces coherent versions of teleportation and superdense coding. We extend the cobit channel to continuous variables by providing a definition of the coherent nat (conat) channel. We construct several coherent protocols that use both a position-quadrature and a momentum-quadrature conat channel with finite squeezing. Finally, we show that the quality of squeezing diminishes through successive compositions of coherent teleportation and superdense coding.Comment: 4 pages, 3 figure

    Preliminary Empirical Assessment of Offshore Production Platforms in the Gulf of Mexico

    Get PDF
    This paper reports on a preliminary analysis of performance indicators on 3,020 platforms operating in the Gulf of Mexico between 1996 and 2010. Statistical analysis reveals that company-reported incidents (such as blowouts, fires, injuries, and pollution) increase with water depth, controlling for platform characteristics such as age, quantity of oil and gas produced, and number of producing wells. In addition to company-reported incidents, we examine government inspections and the type of enforcement action (warning, component shut-in, facility shut-in, or civil penalty review) following an inspection. Fewer incidents of noncompliance are detected during inspections on deepwater platforms compared with shallow-water platforms; however, the magnitude of the effect of depth on noncompliance is not large. We provide a preliminary analysis of the effect of prior findings of noncompliance, suggesting that noncompliance is persistent. We also find significant variability in both self-reported incidents and noncompliance across leaseholders.noncompliance, inspection, offshore oil and gas
    • …
    corecore