101 research outputs found

    Dynamin as a Mover and Pincher during Cell Migration and Invasion

    Get PDF
    The large GTPase dynamin, long known for its role in endocytosis, has most recently been implicated as a facilitator of cell migration and invasion. Recent observations link dynamin to the cycle of membrane expansion and retraction essential for cell motility. Its role in actin polymerization, membrane deformation and vesiculation, and focal adhesion dynamics are all important for this process, and the new findings provide exciting directions for studies of this ubiquitous and diverse protein family

    A Dynamin-3 Spliced Variant Modulates the Actin/Cortactin-Dependent Morphogenesis of Dendritic Spines

    Get PDF
    Immature dendrites extend many actin-rich filopodial structures that can be replaced by synapse-containing dendritic spines as the neuron matures. The large GTPase dynamin-3 (Dyn3) is a component of the postsynapse in hippocampal neurons but its function is undefined. Here, we demonstrate that a specific Dyn3 variant (Dyn3baa) promotes the formation of immature dendritic filopodia in cultured neurons. This effect is dependent upon Dyn3 GTPase activity and a direct interaction with the F-actin-binding protein cortactin. Consistent with these findings, Dyn3baa binds to cortactin with a 200% higher affinity than Dyn3aaa, a near identical isoform that does not induce dendritic filopodia when expressed in cultured neurons. Finally, levels of Dyn3baa-encoding mRNA are tightly regulated during neuronal maturation and are markedly upregulated during synaptogenesis. Together, these findings provide the first evidence that an enhanced interaction between a specific Dyn3 splice variant and cortactin modulate actin-membrane dynamics in developing neurons to regulate the morphogenesis of dendritic spines. Supplementary material available online at http://jcs.biologists.org/cgi/content/full/118/6/1279/DC

    CIN85 phosphorylation is essential for EGFR ubiquitination and sorting into multivesicular bodies

    Get PDF
    Ubiquitination of the epidermal growth factor receptor (EGFR) by cbl and its cognate adaptor cbl-interacting protein of 85 kDa (CIN85) is known to play an essential role in directing this receptor to the lysosome for degradation. The mechanisms by which this ubiquitin modification is regulated are not fully defined, nor is it clear where this process occurs. In this study we show that EGFR activation leads to a pronounced src-mediated tyrosine phosphorylation of CIN85 that subsequently influences EGFR ubiquitination. Of importance, phospho-CIN85 interacts with the Rab5-positive endosome, where it mediates the sequestration of the ubiquitinated receptor into multivesicular bodies (MVBs) for subsequent degradation. These findings provide novel insights into how src- kinase–based regulation of a cbl adaptor regulates the fate of the EGFR

    Large Scale Matrix Degradation by Stromal Cells Independent of Invadopodia

    Get PDF
    Invadopodia are actin-rich structures at the base of many neoplastic cells that sequester matrix metalloproteases that act to degrade the surrounding stroma to facilitate the invasive process. Conventional invadopodia are dependent upon Src kinase and the large GTPase dynamin 2 (Dyn 2). Whether invadopodia are the only mechanism by which cells degrade matrix is unclear. We have observed that cells of mesenchymal origin degrade matrix in an unique way different from tumor cells. The HYPOTHESIS of this study is that fibroblasts, and other cells of mesenchymal origin, degrade matrix by a mechanism distinct from that of epithelial-based tumor cells. The CONCLUSION is that stromal cells degrade matrix by a novel mechanism distinct from traditional invadopodia

    The Large GTPase Dynamin Associates with the Spindle Midzone and Is Required for Cytokinesis

    Get PDF
    AbstractCytokinesis involves the concerted efforts of the microtubule and actin cytoskeletons as well as vesicle trafficking and membrane remodeling to form the cleavage furrow and complete daughter cell separation (for reviews, see [1–6]). The exact mechanisms that support membrane remodeling during cytokinesis remain largely undefined. In this study, we report that the large GTPase dynamin, a protein involved in membrane tubulation and vesiculation [7, 8], is essential for successful cytokinesis. Using biochemical and morphological methods, we demonstrate that dynamin localizes to the spindle midzone and the subsequent intercellular bridge in mammalian cells and is also enriched in spindle midbody extracts. In Caenorhabditis elegans, dynamin localized to newly formed cleavage furrow membranes and accumulated at the midbody of dividing embryos in a manner similar to dynamin localization in mammalian cells. Further, dynamin function appears necessary for cytokinesis, as C. elegans embryos from a dyn-1 ts strain [9], as well as dynamin RNAi-treated embryos, showed a marked defect in the late stages of cytokinesis. These findings indicate that, during mitosis, conventional dynamin is recruited to the spindle midzone and the subsequent intercellular bridge, where it plays an essential role in the final separation of dividing cells

    Stromal Fibroblasts Facilitate Cancer Cell Invasion by a Novel Invadopodia-Independent Matrix Degradation Process

    Get PDF
    Metastatic invasion of tumors into peripheral tissues is known to rely upon protease-mediated degradation of the surrounding stroma. This remodeling process utilizes complex, actin-based, specializations of the plasma membrane termed invadopodia that act both to sequester and release matrix metalloproteinases. Here we report that cells of mesenchymal origin, including tumor-associated fibroblasts, degrade substantial amounts of surrounding matrix by a mechanism independent of conventional invadopodia. These degradative sites lack the punctate shape of conventional invadopodia to spread along the cell base and are reticular and/or fibrous in character. In marked contrast to invadopodia, this degradation does not require the action of Src kinase, Cdc42, or Dyn2. Rather, inhibition of Dyn2 causes a dramatic upregulation of stromal matrix degradation. Further, expression and activity of matrix metalloproteinases are differentially regulated between tumor cells and stromal fibroblasts. This matrix remodeling by fibroblasts increases the invasive capacity of tumor cells, thereby illustrating how the tumor microenvironment can contribute to metastasis. These findings provide evidence for a novel matrix remodeling process conducted by stromal fibroblasts that is substantially more effective than conventional invadopodia, distinct in structural organization, and regulated by disparate molecular mechanisms

    Lipophagy and Alcohol-Induced Fatty Liver

    Get PDF
    This review describes the influence of ethanol consumption on hepatic lipophagy, a selective form of autophagy during which fat-storing organelles known as lipid droplets (LDs) are degraded in lysosomes. During classical autophagy, also known as macroautophagy, all forms of macromolecules and organelles are sequestered in autophagosomes, which, with their cargo, fuse with lysosomes, forming autolysosomes in which the cargo is degraded. It is well established that excessive drinking accelerates intrahepatic lipid biosynthesis, enhances uptake of fatty acids by the liver from the plasma and impairs hepatic secretion of lipoproteins. All the latter contribute to alcohol-induced fatty liver (steatosis). Here, our principal focus is on lipid catabolism, specifically the impact of excessive ethanol consumption on lipophagy, which significantly influences the pathogenesis alcohol-induced steatosis. We review findings, which demonstrate that chronic ethanol consumption retards lipophagy, thereby exacerbating steatosis. This is important for two reasons: (1) Unlike adipose tissue, the liver is considered a fat-burning, not a fat-storing organ. Thus, under normal conditions, lipophagy in hepatocytes actively prevents lipid droplet accumulation, thereby maintaining lipostasis; (2) Chronic alcohol consumption subverts this fat-burning function by slowing lipophagy while accelerating lipogenesis, both contributing to fatty liver. Steatosis was formerly regarded as a benign consequence of heavy drinking. It is now recognized as the first hit in the spectrum of alcohol-induced pathologies that, with continued drinking, progresses to more advanced liver disease, liver failure, and/or liver cancer. Complete lipid droplet breakdown requires that LDs be digested to release their high-energy cargo, consisting principally of cholesteryl esters and triacylglycerols (triglycerides). These subsequently undergo lipolysis, yielding free fatty acids that are oxidized in mitochondria to generate energy. Our review will describe recent findings on the role of lipophagy in LD catabolism, how continuous heavy alcohol consumption affects this process, and the putative mechanism(s) by which this occurs
    • …
    corecore