52 research outputs found

    Keeping vigil over the profession: a grounded theory of the context of nurse anaesthesia practice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nurse anaesthetists in the US have faced continued, repeated challenges to their profession. Regardless, they have met these challenges and have established themselves as major anaesthesia care providers. In this paper we address the research question: How do certified registered nurse anaesthetists (CRNAs) manage the socio-political context in which they provide care for their patients?</p> <p>Methods</p> <p>Grounded theory was used to explore how nurse anaesthetists protect and promote their profession. Purposive, snowball, and theoretical sampling was used and data were collected through participant observation and interviews conducted at a conference of the professional association, an educational program, by telephone, email exchanges, and time spent in operating rooms and an outpatient surgical clinic. Analysis included coding at increasingly abstract levels and constant comparison.</p> <p>Results</p> <p>The basic social process identified was Keeping Vigil Over the Profession, which explains how nurse anaesthetists protect and promote their profession. It is comprised of three contextual categories: Establishing Public Credibility through regulatory and educational standards, Political Vigilance and taking action in governmental and policy arenas, and Tending the Flock through a continuous information loop between local and administrative/political levels.</p> <p>Conclusions</p> <p>From our study of the context of nurse anaesthesia practice, it is clear that CRNAs are dedicated to protecting their ability to provide high quality patient care by maintaining constant vigilance over their profession.</p

    Reducing health inequities: the contribution of core public health services in BC

    Full text link

    Diagnosis and management of glutaric aciduria type I – revised recommendations

    Get PDF
    Glutaric aciduria type I (synonym, glutaric acidemia type I) is a rare organic aciduria. Untreated patients characteristically develop dystonia during infancy resulting in a high morbidity and mortality. The neuropathological correlate is striatal injury which results from encephalopathic crises precipitated by infectious diseases, immunizations and surgery during a finite period of brain development, or develops insidiously without clinically apparent crises. Glutaric aciduria type I is caused by inherited deficiency of glutaryl-CoA dehydrogenase which is involved in the catabolic pathways of L-lysine, L-hydroxylysine and L-tryptophan. This defect gives rise to elevated glutaric acid, 3-hydroxyglutaric acid, glutaconic acid, and glutarylcarnitine which can be detected by gas chromatography/mass spectrometry (organic acids) or tandem mass spectrometry (acylcarnitines). Glutaric aciduria type I is included in the panel of diseases that are identified by expanded newborn screening in some countries. It has been shown that in the majority of neonatally diagnosed patients striatal injury can be prevented by combined metabolic treatment. Metabolic treatment that includes a low lysine diet, carnitine supplementation and intensified emergency treatment during acute episodes of intercurrent illness should be introduced and monitored by an experienced interdisciplinary team. However, initiation of treatment after the onset of symptoms is generally not effective in preventing permanent damage. Secondary dystonia is often difficult to treat, and the efficacy of available drugs cannot be predicted precisely in individual patients. The major aim of this revision is to re-evaluate the previous diagnostic and therapeutic recommendations for patients with this disease and incorporate new research findings into the guideline

    Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8\sqrt{s} = 8 TeV with the ATLAS detector

    Get PDF

    Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at s=8TeV\sqrt{s}=8\,\mathrm TeV{} with the ATLAS detector

    Get PDF

    Measurement of the bbb\overline{b} dijet cross section in pp collisions at s=7\sqrt{s} = 7 TeV with the ATLAS detector

    Get PDF

    ATLAS Run 1 searches for direct pair production of third-generation squarks at the Large Hadron Collider

    Get PDF
    corecore