19 research outputs found

    Adsorption of CO 2

    No full text

    Response to Comment on “Adsorption of CO 2

    No full text

    Hydrophobisation of mesoporous y-Al2O3 with organochlorosilanes - efficiency and structure

    Get PDF
    γ-Al2O3 materials with small mesopores are hydrophobised by reactions with organochlorosilanes in liquid media. The structure of the modified materials is studied by means of physisorption and high-resolution SEM. A good measure of the decrease in surface polarity can be obtained from BET-fits of the N2 isotherms. It was found that many pores become blocked by using chlorosilanes with bulky organic groups, while a more open structure is preserved for methylchlorosilanes. Using toluene as a solvent leads to a higher extent of modification than ethanol, as observed for methylchlorosilanes. Multifunctional organochlorosilanes (i.e. with 2 or 3 Cl-groups) are more reactive but also give rise to blockage of some of the microporous part as a result of polymerisation reactions. Mono- and difunctional methylchlorosilanes give the best results for alumina materials with small mesopores, preserving an open structure and leading to homogeneous modification. Modification with methylchlorosilanes in toluene leads to the lowest surface polarity. The results give clues for optimising the procedures for hydrophobisation of porous materials with small mesopores

    Microporous structure and enhanced hydrophobicity in methylated SiO2 for molecular separation

    Get PDF
    Methylated microporous silica with high thermal stability and tuneable hydrophobicity was obtained by acid-catalysed sol–gel hydrolysis and condensation of mixtures of tetraethylorthosilicate (TEOS) and methyltriethoxysilane (MTES). The gels exhibited a trend towards smaller ultramicropores with increasing methyl content, while in addition some supermicropores were formed with sizes of around 2 nm. For low MTES concentration, dilution prior to gelation and ageing resulted in materials with clearly smaller ultramicropores, whereas only a minor effect of dilution on structure was found at high MTES concentration. The small ultramicropore size in diluted materials can be associated with a higher extent of condensation of mainly TEOS monomers. Stable structures formed from MTES in an early stage of synthesis may explain the particular micropore structure of MTES-rich gels. With increasing methyl content and with dilution of the sol, the affinity of the surface to water was strongly decreased. The applicability of microporous silica in wet atmospheres may thus be improved by methylation, and their pore structure modified by adaptation of the recipe, which would be highly relevant for industrial gas and liquid separation by inorganic membranes

    Highly selective water adsorption in a lanthanum metal-organic framework

    No full text
    We present a new Metal–organic Framework (MOF) built from lanthanum and pyrazine-2,5-dicarboxylate (pyzdc) ions. This MOF, [La(pyzdc)<sub>1.5</sub>(H<sub>2</sub>O)<sub>2</sub>]⋅2 H<sub>2</sub>O, is microporous, with 1D channels that easily accommodate water molecules. Its framework is highly robust to dehydration/hydration cycles. Unusually for a MOF, it also features a high hydrothermal stability. This makes it an ideal candidate for air drying as well as for separating water/alcohol mixtures. The ability of the activated MOF to adsorb water selectively was evaluated by means of thermogravimetric analysis, powder and single-crystal X-ray diffraction and adsorption studies, indicating a maximum uptake of 1.2 mmol g<sup>-1</sup> MOF. These results are in agreement with the microporous structure, which permits only water molecules to enter the channels (alcohols, including methanol, are simply too large). Transient breakthrough simulations using water/methanol mixtures confirm that such mixtures can be separated cleanly using this new MOF

    Sieving di-branched from mono-branched and linear alkanes using ZIF-8: experimental proof and theoretical explanation

    No full text
    We study the adsorption equilibrium isotherms and differential heats of adsorption of hexane isomers on the zeolitic imidazolate framework ZIF-8. The studies are carried out at 373 K using a manometric set-up combined with a micro-calorimeter. We see that the Langmuir model describes well the isotherms for all four isomers (n-hexane, 2-methylpentane, 2,2-dimethylbutane and 2,3-dimethylbutane). The linear and mono-branched isomers adsorb well, but 2,2-dimethylbutane is totally excluded. Plotting the differential heat of adsorption against the loading shows an initial plateau for n-hexane and 2-methylpentane. This is followed by a slow rise, indicating adsorbate-adsorbate interactions. For the di-branched isomers the differential heat of adsorption decreases with loading. To gain further insight, we ran molecular simulations using the grand-canonical Monte Carlo approach. Comparing the simulation and the experimental results shows that the ZIF framework model requires blocking of the cages, since 2,2-dimethylbutane cannot fit through the sodalite-type windows. Practically speaking, this means that ZIF-8 is a highly promising candidate for enhancing gasoline octane numbers at 373 K, as it can separate 2,2-dimethylbutane and 2,3-dimethylbutane from 2-methylpentane. Our results prove the potential of ZIF-8 as a new adsorbent that can be employed in the upgrade of the Total Isomerization Process for the production of high octane number gasoline, by blending di-branched alkanes in the gasoline

    Tailoring the separation behavior of hybrid organosilica membranes by adjusting the structure of the organic bridging group

    Get PDF
    Hybrid organically linked silica is a highly promising class of materials for the application in energy-efficient molecular separation membranes. Its high stability allows operation under aggressive working conditions. Herein is reported the tailoring of the separation performance of these hybrid silica membranes by adjusting the size, flexibility, shape, and electronic structure of the organic bridging group. A single generic procedure is applied to synthesize nanoporous membranes from bridged silsesquioxane precursors with different reactivities. Membranes with short alkylene (CH2 and C2H4) bridging groups show high H2/N2 permeance ratios, related to differences in molecular size. The highest CO2/H2 permeance ratios, related to the affinity of adsorption in the material, are obtained for longer (C8H16) alkylene and aryl bridges. Materials with long flexible alkylene bridges have a hydrophobic surface and show strongly temperature-dependent molecular transport as well as a high n-butanol flux in a pervaporation process, which is indicative of organic polymerlike properties. The versatility of the bridging group offers an extensive toolbox to tune the nanostructure and the affinity of hybrid silica membranes and by doing so to optimize the performance towards specific separation challenges. This provides excellent prospects for industrial applications such as carbon capture and biofuel production

    NiCl 2

    No full text
    corecore