3 research outputs found

    Accounting for multimorbidity can affect the estimation of the Burden of Disease : A comparison of approaches

    No full text
    Background: Various Burden of Disease (BoD) studies do not account for multimorbidity in their BoD estimates. Ignoring multimorbidity can lead to inaccuracies in BoD estimations, particularly in ageing populations that include large proportions of persons with two or more health conditions. The objective of this study is to improve BoD estimates for the Netherlands by accounting for multimorbidity. For this purpose, we analyzed different methods for 1) estimating the prevalence of multimorbidity and 2) deriving Disability Weights (DWs) for multimorbidity by using existing data on single health conditions. Methods: We included 25 health conditions from the Dutch Burden of Disease study that have a high rate of prevalence and that make a large contribution to the total number of Years Lived with a Disability (YLD). First, we analyzed four methods for estimating the prevalence of multimorbid conditions (i.e. independent, independent age-and sex-specific, dependent, and dependent sex-and age-specific). Secondly, we analyzed three methods for calculating the Combined Disability Weights (CDWs) associated with multimorbid conditions (i.e. additive, multiplicative and maximum limit). A combination of these two approaches was used to recalculate the number of YLDs, which is a component of the Disability-Adjusted Life Years (DALY). Results: This study shows that the YLD estimates for 25 health conditions calculated using the multiplicative method for Combined Disability Weights are 5 % lower, and 14 % lower when using the maximum limit method, than when calculated using the additive method. Adjusting for sex-and age-specific dependent co-occurrence of health conditions reduces the number of YLDs by 10 % for the multiplicative method and by 26 % for the maximum limit method. The adjustment is higher for health conditions with a higher prevalence in old age, like heart failure (up to 43 %) and coronary heart diseases (up to 33 %). Health conditions with a high prevalence in middle age, such as anxiety disorders, have a moderate adjustment (up to 13 %). Conclusions: We conclude that BoD calculations that do not account for multimorbidity can result in an overestimation of the actual BoD. This may affect public health policy strategies that focus on single health conditions if the underlying cost-effectiveness analysis overestimates the intended effects. The methodology used in this study could be further refined to provide greater insight into co-occurrence and the possible consequences of multimorbid conditions in terms of disability for particular combinations of health conditions

    Taking multi-morbidity into account when attributing DALYs to risk factors: comparing dynamic modeling with the GBD2010 calculation method

    Get PDF
    Abstract Background Disability Adjusted Life Years (DALYs) quantify the loss of healthy years of life due to dying prematurely and due to living with diseases and injuries. Current methods of attributing DALYs to underlying risk factors fall short on two main points. First, risk factor attribution methods often unjustly apply incidence-based population attributable fractions (PAFs) to prevalence-based data. Second, it mixes two conceptually distinct approaches targeting different goals, namely an attribution method aiming to attribute uniquely to a single cause, and an elimination method aiming to describe a counterfactual situation without exposure. In this paper we describe dynamic modeling as an alternative, completely counterfactual approach and compare this to the approach used in the Global Burden of Disease 2010 study (GBD2010). Methods Using data on smoking in the Netherlands in 2011, we demonstrate how an alternative method of risk factor attribution using a pure counterfactual approach results in different estimates for DALYs. This alternative method is carried out using the dynamic multistate disease table model DYNAMO-HIA. We investigate the differences between our alternative method and the method used by the GBD2010 by doing additional analyses using data from a synthetic population in steady state. Results We observed important differences between the outcomes of the two methods: in an artificial situation where dynamics play a limited role, DALYs are a third lower as compared to those calculated with the GBD2010 method (398,000 versus 607,000 DALYs). The most important factor is newly occurring morbidity in life years gained that is ignored in the GBD2010 approach. Age-dependent relative risks and exposures lead to additional differences between methods as they distort the results of prevalence-based DALY calculations, but the direction and magnitude of the distortions depend on the particular situation. Conclusions We argue that the GBD2010 approach is a hybrid of an attributional and counterfactual approach, making the end result hard to understand, while dynamic modelling uses a purely counterfactual approach and thus yields better interpretable results
    corecore