2 research outputs found

    Melting of Pb Charge Glass and Simultaneous Pbā€“Cr Charge Transfer in PbCrO<sub>3</sub> as the Origin of Volume Collapse

    No full text
    A metal to insulator transition in integer or half integer charge systems can be regarded as crystallization of charges. The insulating state tends to have a glassy nature when randomness or geometrical frustration exists. We report that the charge glass state is realized in a perovskite compound PbCrO<sub>3</sub>, which has been known for almost 50 years, without any obvious inhomogeneity or triangular arrangement in the charge system. PbCrO<sub>3</sub> has a valence state of Pb<sup>2+</sup><sub>0.5</sub>Pb<sup>4+</sup><sub>0.5</sub>Cr<sup>3+</sup>O<sub>3</sub> with Pb<sup>2+</sup>ā€“Pb<sup>4+</sup> correlation length of three lattice-spacings at ambient condition. A pressure induced melting of charge glass and simultaneous Pbā€“Cr charge transfer causes an insulator to metal transition and āˆ¼10% volume collapse

    Aā€‘Site and Bā€‘Site Charge Orderings in an <i>sā€“d</i> Level Controlled Perovskite Oxide PbCoO<sub>3</sub>

    No full text
    Perovskite PbCoO<sub>3</sub> synthesized at 12 GPa was found to have an unusual charge distribution of Pb<sup>2+</sup>Pb<sup>4+</sup><sub>3</sub>Co<sup>2+</sup><sub>2</sub>Co<sup>3+</sup><sub>2</sub>O<sub>12</sub> with charge orderings in both the A and B sites of perovskite ABO<sub>3</sub>. Comprehensive studies using density functional theory (DFT) calculation, electron diffraction (ED), synchrotron X-ray diffraction (SXRD), neutron powder diffraction (NPD), hard X-ray photoemission spectroscopy (HAXPES), soft X-ray absorption spectroscopy (XAS), and measurements of specific heat as well as magnetic and electrical properties provide evidence of lead ion and cobalt ion charge ordering leading to Pb<sup>2+</sup>Pb<sup>4+</sup><sub>3</sub>Co<sup>2+</sup><sub>2</sub>Co<sup>3+</sup><sub>2</sub>O<sub>12</sub> quadruple perovskite structure. It is shown that the average valence distribution of Pb<sup>3.5+</sup>Co<sup>2.5+</sup>O<sub>3</sub> between Pb<sup>3+</sup>Cr<sup>3+</sup>O<sub>3</sub> and Pb<sup>4+</sup>Ni<sup>2+</sup>O<sub>3</sub> can be stabilized by tuning the energy levels of Pb 6<i>s</i> and transition metal 3<i>d</i> orbitals
    corecore