14 research outputs found

    Beneficial effect of mildly pasteurized whey protein on intestinal integrity and innate defense in preterm and near-term piglets

    Get PDF
    Background. The human digestive tract is structurally mature at birth, yet maturation of gut functions such as digestion and mucosal barrier continues for the next 1–2 years. Human milk and infant milk formulas (IMF) seem to impact maturation of these gut functions differently, which is at least partially related to high temperature processing of IMF causing loss of bioactive proteins and formation of advanced glycation end products (AGEs). Both loss of protein bioactivity and formation of AGEs depend on heating temperature and time. The aim of this study was to investigate the impact of mildly pasteurized whey protein concentrate (MP-WPC) compared to extensively heated WPC (EH-WPC) on gut maturation in a piglet model hypersensitive to enteral nutrition. Methods. WPC was obtained by cold filtration and mildly pasteurized (73 °C, 30 s) or extensively heat treated (73 °C, 30 s + 80 °C, 6 min). Preterm (~90% gestation) and near-term piglets (~96% gestation) received enteral nutrition based on MP-WPC or EH-WPC for five days. Macroscopic and histologic lesions in the gastro-intestinal tract were evaluated and intestinal responses were further assessed by RT-qPCR, immunohistochemistry and enzyme activity analysis. Results. A diet based on MP-WPC limited epithelial intestinal damage and improved colonic integrity compared to EH-WPC. MP-WPC dampened colonic IL1-β, IL-8 and TNF-α expression and lowered T-cell influx in both preterm and near-term piglets. Anti-microbial defense as measured by neutrophil influx in the colon was only observed in near-term piglets, correlated with histological damage and was reduced by MP-WPC. Moreover, MP-WPC stimulated iALP activity in the colonic epithelium and increased differentiation into enteroendocrine cells compared to EH-WPC. Conclusions. Compared to extensively heated WPC, a formula based on mildly pasteurized WPC limits gut inflammation and stimulates gut maturation in preterm and near-term piglets and might therefore also be beneficial for preterm and (near) term infants.</p

    Protein Intake, Fatigue and Quality of Life in Stable Outpatient Kidney Transplant Recipients

    Get PDF
    Fatigue is a frequent complaint in kidney transplant recipients (KTR), often accompanied by poor quality of life (QoL). The role of nutrition as determinant of fatigue in KTR is largely unexplored. The aims of this study are to examine the association of protein intake with fatigue and QoL in KTR and to identify other determinants of fatigue. This cross-sectional study is part of the TransplantLines Cohort and Biobank Study (NCT03272841). Protein intake was calculated from urinary urea nitrogen (UUN) in 24-h urine samples. Fatigue was assessed by the Checklist Individual Strength (CIS) questionnaire; moderate and severe fatigue were defined as a CIS score of 20–34 and ≥ 35, respectively. QoL was assessed with the RAND-36-Item Health Survey (RAND-36). Associations of protein intake with fatigue and QoL were analyzed using multinomial logistic and linear regression analyses. We included 730 stable outpatient KTR (median age 58 year [IQR 48–65], 57% male) with a mean protein intake of 82.2 ± 21.3 g/d. Moderate and severe fatigue were present in 254 (35%) and 245 (34%) of KTR. Higher protein intake was significantly associated with lower risk of moderate fatigue (OR 0.89 per 10 g/d; 95%CI 0.83–0.98, p = 0.01), severe fatigue (OR 0.85; 95%CI 0.78–0.92, p < 0.001) and was associated with higher physical component summary score of QoL (β 0.74 per 10 g/d; 95%CI 0.39–1.09, p < 0.001). Higher BMI, a history of dialysis, glomerulonephritis as primary kidney disease and a history of combined organ transplantation were also associated with severe fatigue. In conclusion, amongst the potential modifiable factors of fatigue, higher protein intake is independently associated with lower risk of moderate and severe fatigue and with better QoL in KTR. These findings underline the need to incorporate nutritional assessment in the diagnostic work-up of fatigue. Intervention studies are needed to assess the benefits and safety of higher protein intake in KTR

    The application of organ-on-chip models for the prediction of human pharmacokinetic profiles during drug development

    Get PDF
    Organ-on-chip (OoC) technology has led to in vitro models with many new possibilities compared to conventional in vitro and in vivo models. In this review, the potential of OoC models to improve the prediction of human oral bioavailability and intrinsic clearance is discussed, with a focus on the functionality of the models and the application in current drug development practice. Multi-OoC models demonstrating the application for pharmacokinetic (PK) studies are summarized and existing challenges are identified. Physiological parameters for a minimal viable platform of a multi-OoC model to study PK are provided, together with PK specific read-outs and recommendations for relevant reference compounds to validate the model. Finally, the translation to in vivo PK profiles is discussed, which will be required to routinely apply OoC models during drug development

    Postbiotic Modulation of Retinoic Acid Imprinted Mucosal-like Dendritic Cells by Probiotic Lactobacillus reuteri 17938 In Vitro

    Get PDF
    Lactobacilli are widely used as probiotics with beneficial effects on infection-associated diarrhea, but also used in clinical trials of e.g. necrotizing enterocolitis and inflammatory bowel diseases. The possibility of using probiotic metabolic products, so called postbiotics, is desirable as it could prevent possible side effects of live bacteria in individuals with a disturbed gut epithelial barrier. Here we studied how Lactobacillus reuteri DSM 17938 cell free supernatant (L. reuteri-CFS) influenced retinoic acid (RA)-driven mucosal-like dendritic cells (DC) and their subsequent effect on T regulatory cells (Treg) in vitro. RA clearly imprinted a mucosal-like DC phenotype with higher IL10 production, increased CD103 and CD1d expression and a down-regulated mRNA expression of several inflammatory-associated genes (NFκB1, RELB and TNF). Treatment with L. reuteri-CFS further influenced the tolerogenic phenotype of RA-DC by down-regulating most genes involved in antigen uptake, antigen presentation and signal transduction as well as several chemokine receptors, while up regulating IL10 production. L. reuteri-CFS also augmented CCR7 expression on RA-DC. In co-cultures, RA-DC increased IL10 and FOXP3 expression in Treg, but pre-treatment with L. reuteri-CFS did not further influence the Treg phenotype. In conclusion, L. reuteri-CFS modulates the phenotype and function of mucosal-like DC, implicating its potential application as postbiotic

    Recapitulating Suckling-to-Weaning Transition In Vitro using Fetal Intestinal Organoids

    No full text
    At the end of the suckling period, many mammalian species undergo major changes in the intestinal epithelium that are associated with the capability to digest solid food. This process is termed suckling-to-weaning transition and results in the replacement of neonatal epithelium with adult epithelium which goes hand in hand with metabolic and morphological adjustments. These complex developmental changes are the result of a genetic program that is intrinsic to the intestinal epithelial cells but can, to some extent, be modulated by extrinsic factors. Prolonged culture of mouse primary intestinal epithelial cells from late fetal period, recapitulates suckling-to-weaning transition in vitro. Here, we describe a detailed protocol for mouse fetal intestinal organoid culture best suited to model this process in vitro. We describe several useful assays designed to monitor the change of intestinal functions associated with suckling-to-weaning transition over time. Additionally, we include an example of an extrinsic factor that is capable to affect suckling-to-weaning transition in vivo, as a representation of modulating the timing of suckling-to-weaning transition in vitro. This in vitro approach can be used to study molecular mechanisms of the suckling-to-weaning transition as well as modulators of this process. Importantly, with respect to animal ethics in research, replacing in vivo models by this in vitro model contributes to refinement of animal experiments and possibly to a reduction in the use of animals to study gut maturation processes

    Mildly pasteurized whey protein promotes gut tolerance in immature piglets compared with extensively heated whey protein

    No full text
    Human milk is the optimal diet for infant development, but infant milk formula (IMF) must be available as an alternative. To develop high-quality IMF, bovine milk processing is required to ensure microbial safety and to obtain a protein composition that mimics human milk. However, processing can impact the quality of milk proteins, which can influence gastro-intestinal (GI) tolerance by changing digestion, transit time and/or absorption. The aim of this study was to evaluate the impact of structural changes of proteins due to thermal processing on gastro-intestinal tolerance in the immature GI tract. Preterm and near-term piglets received enteral nutrition based on whey protein concentrate (WPC) either mildly pasteurized (MP-WPC) or extensively heated (EH-WPC). Clinical symptoms, transit time and gastric residuals were evaluated. In addition, protein coagulation and protein composition of coagulates formed during in vitro digestion were analyzed in more detail. Characterization of MP-WPC and EH-WPC revealed that mild pasteurization maintained protein nativity and reduced aggregation of β-lactoglobulin and α-lactalbumin, relative to EH-WPC. Mild pasteurization reduced the formation of coagulates during digestion, resulting in reduced gastric residual volume and increased intestinal tract content. In addition, preterm piglets receiving MP-WPC showed reduced mucosal bacterial adherence in the proximal small intestine. Finally, in vitro digestion studies revealed less protein coagulation and lower levels of β-lactoglobulin and α-lactalbumin in the coagulates of MP-WPC compared with EH-WPC. In conclusion, minimal heat treatment of WPC compared with extensive heating promoted GI tolerance in immature piglets, implying that minimal heated WPC could improve the GI tolerance of milk formulas in infants

    Mildly pasteurized whey protein promotes gut tolerance in immature piglets compared with extensively heated whey protein

    No full text
    Human milk is the optimal diet for infant development, but infant milk formula (IMF) must be available as an alternative. To develop high-quality IMF, bovine milk processing is required to ensure microbial safety and to obtain a protein composition that mimics human milk. However, processing can impact the quality of milk proteins, which can influence gastro-intestinal (GI) tolerance by changing digestion, transit time and/or absorption. The aim of this study was to evaluate the impact of structural changes of proteins due to thermal processing on gastro-intestinal tolerance in the immature GI tract. Preterm and near-term piglets received enteral nutrition based on whey protein concentrate (WPC) either mildly pasteurized (MP-WPC) or extensively heated (EH-WPC). Clinical symptoms, transit time and gastric residuals were evaluated. In addition, protein coagulation and protein composition of coagulates formed during in vitro digestion were analyzed in more detail. Characterization of MP-WPC and EH-WPC revealed that mild pasteurization maintained protein nativity and reduced aggregation of β-lactoglobulin and α-lactalbumin, relative to EH-WPC. Mild pasteurization reduced the formation of coagulates during digestion, resulting in reduced gastric residual volume and increased intestinal tract content. In addition, preterm piglets receiving MP-WPC showed reduced mucosal bacterial adherence in the proximal small intestine. Finally, in vitro digestion studies revealed less protein coagulation and lower levels of β-lactoglobulin and α-lactalbumin in the coagulates of MP-WPC compared with EH-WPC. In conclusion, minimal heat treatment of WPC compared with extensive heating promoted GI tolerance in immature piglets, implying that minimal heated WPC could improve the GI tolerance of milk formulas in infants

    Beneficial effect of mildly pasteurized whey protein on intestinal integrity and innate defense in preterm and near-term piglets

    No full text
    Background. The human digestive tract is structurally mature at birth, yet maturation of gut functions such as digestion and mucosal barrier continues for the next 1–2 years. Human milk and infant milk formulas (IMF) seem to impact maturation of these gut functions differently, which is at least partially related to high temperature processing of IMF causing loss of bioactive proteins and formation of advanced glycation end products (AGEs). Both loss of protein bioactivity and formation of AGEs depend on heating temperature and time. The aim of this study was to investigate the impact of mildly pasteurized whey protein concentrate (MP-WPC) compared to extensively heated WPC (EH-WPC) on gut maturation in a piglet model hypersensitive to enteral nutrition. Methods. WPC was obtained by cold filtration and mildly pasteurized (73 °C, 30 s) or extensively heat treated (73 °C, 30 s + 80 °C, 6 min). Preterm (~90% gestation) and near-term piglets (~96% gestation) received enteral nutrition based on MP-WPC or EH-WPC for five days. Macroscopic and histologic lesions in the gastro-intestinal tract were evaluated and intestinal responses were further assessed by RT-qPCR, immunohistochemistry and enzyme activity analysis. Results. A diet based on MP-WPC limited epithelial intestinal damage and improved colonic integrity compared to EH-WPC. MP-WPC dampened colonic IL1-β, IL-8 and TNF-α expression and lowered T-cell influx in both preterm and near-term piglets. Anti-microbial defense as measured by neutrophil influx in the colon was only observed in near-term piglets, correlated with histological damage and was reduced by MP-WPC. Moreover, MP-WPC stimulated iALP activity in the colonic epithelium and increased differentiation into enteroendocrine cells compared to EH-WPC. Conclusions. Compared to extensively heated WPC, a formula based on mildly pasteurized WPC limits gut inflammation and stimulates gut maturation in preterm and near-term piglets and might therefore also be beneficial for preterm and (near) term infants

    Mouse fetal intestinal organoids: new model to study epithelial maturation from suckling to weaning

    No full text
    During the suckling-to-weaning transition, the intestinal epithelium matures, allowing digestion of solid food. Transplantation experiments with rodent fetal epithelium into subcutaneous tissue of adult animals suggest that this transition is intrinsically programmed and occurs in the absence of dietary or hormonal signals. Here, we show that organoids derived from mouse primary fetal intestinal epithelial cells express markers of late fetal and neonatal development. In a stable culture medium, these fetal epithelium-derived organoids lose all markers of neonatal epithelium and start expressing hallmarks of adult epithelium in a time frame that mirrors epithelial maturation in vivo. In vitro postnatal development of the fetal-derived organoids accelerates by dexamethasone, a drug used to accelerate intestinal maturation in vivo. Together, our data show that organoids derived from fetal epithelium undergo suckling-to-weaning transition, that the speed of maturation can be modulated, and that fetal organoids can be used to model the molecular mechanisms of postnatal epithelial maturation
    corecore