34 research outputs found
Recommended from our members
A Review of Magnetic Resonance Spectroscopy Studies in Marijuana using Adolescents and Adults
Marijuana (MJ) remains the most widely used illicit drug of abuse, and accordingly, is associated with adverse effects on mental and physical health, and neurocognitive decline. Studies investigating the neurobiology of underlying MJ effects have demonstrated structural and functional alterations in brain areas that contain moderate to high concentrations of cannabinoid (CB1) receptors and that are implicated in MJ-related cognitive decrements. Proton magnetic resonance spectroscopy (1H MRS), a non-invasive imaging technique used to assess neurochemistry, has been widely applied to probe a variety of substance-abusing populations. To date, however, there is a relative paucity of MRS published studies characterizing changes in neurometabolite concentrations in MJ users. Thus, the current review provides a summary of data from the eight existing MRS studies of MJ use in adolescents and adults, as well as interpretations and implications of study findings. Future MRS studies that address additional factors such as sex differences, onset and duration of use, abstinence and age, are warranted, and would lead to a more thorough characterization of potential neurochemical correlates of chronic MJ use, which would fill critical gaps in the existing literature
Recommended from our members
Lower Left Thalamic Myo-Inositol Levels Associated with Greater Cognitive Impulsivity in Marijuana-Dependent Young Men: Preliminary Spectroscopic Evidence at 4T
The effects of chronic marijuana (MRJ) use on neurochemistry are not well characterized. Previously, altered global myo-Inositol (mI) concentrations and distribution in white matter were associated with impulsivity and mood symptoms in young MRJ-dependent men. The objective of this study was to retrospectively examine previously collected data, to investigate the potential regional specificity of metabolite levels in brain regions densely packed with cannabinoid receptors. Spectra were acquired at 4.0 Tesla using 2D J-resolved proton magnetic resonance spectroscopic imaging (MRSI) to quantify the entire J-coupled spectral surface of metabolites from voxels in regions of interest. For the current regional spectral analyses, a 2D-JMRSI grid was positioned over the central axial slice and shifted in the x and y dimensions to optimally position voxels over regions containing thalamus, temporal lobe, and parieto-occipital cortex. MRJ users exhibited significantly reduced mI levels in the left thalamus (lThal), relative to non-using participants, which were associated with elevated cognitive impulsivity. Other regional analyses did not reveal any significant group differences. The current findings indicate that reduced mI levels are regionally specific to the lThal in MRJ users. Furthermore, findings suggest that mI and the lThal uniquely contribute to elevated impulsivity
Effects of Yoga on Thalamic Gamma-Aminobutyric Acid, Mood and Depression: Analysis of Two Randomized Controlled Trials
Objective: The Vagal-Gamma-Aminobutyric Acid (GABA) theory proposes that some yoga postures and breathing practices exert their effects through stimulation of vagal nerves (parasympathetic system) with associated brain GABA increases. To evaluate this theory, we compared results from a 12-week randomized controlled trial (RCT) of yoga in participants with Major Depressive Disorder (MDD) with those of a similar RCT in healthy control participants (HC).
Methods: In an RCT, magnetic resonance spectroscopy (MRS) and mood measures were acquired in subjects with MDD (n=15) prior to and following a 12-week yoga intervention. The same measures were obtained in the HC (n=17) group. In both studies, thalamic GABA/Creatine was obtained using MEGAPRESS at 4 Telsa at baseline (Scan-1), post-intervention (Scan-2), and immediately following a yoga session (Scan-3). Clinical scales were completed prior to each scan.
Results: The MDD-group had significantly lower GABA compared to the HC at baseline (Scan-1, p=0.001), but not after 12 weeks of yoga, either before (Scan-2, p=0.12) or after a yoga session (Scan-3, p=0.20). Depressive symptoms decreased significantly in the MDD-group (p=0.0001), and anxiety improved in both groups.
Conclusion: After a 12-week yoga intervention, MDD-group mood and anxiety measures improved with scores equivalent to those of non-depressed individuals. This study provides the first evidence of brain GABA increases associated with specific yoga postures and breathing practices in MDD. These results suggest potential benefits of specific yoga postures and breathing practices as monotherapy or augmentation to other treatments to reduce anxiety and depression in MDD
Recommended from our members
Denoising scanner effects from multimodal MRI data using linked independent component analysis
Pooling magnetic resonance imaging (MRI) data across research studies, or utilizing shared data from imaging repositories, presents exceptional opportunities to advance and enhance reproducibility of neuroscience research. However, scanner confounds hinder pooling data collected on different scanners or across software and hardware upgrades on the same scanner, even when all acquisition protocols are harmonized. These confounds reduce power and can lead to spurious findings. Unfortunately, methods to address this problem are scant. In this study, we propose a novel denoising approach that implements a data-driven linked independent component analysis (LICA) to identify scanner-related effects for removal from multimodal MRI to denoise scanner effects. We utilized multi-study data to test our proposed method that were collected on a single 3T scanner, pre- and post-software and major hardware upgrades and using different acquisition parameters. Our proposed denoising method shows a greater reduction of scanner-related variance compared with standard GLM confound regression or ICA-based single-modality denoising. Although we did not test it here, for combining data across different scanners, LICA should prove even better at identifying scanner effects as between-scanner variability is generally much larger than within-scanner variability. Our method has great promise for denoising scanner effects in multi-study and in large-scale multi-site studies that may be confounded by scanner differences.Open access articleThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
A Randomized Controlled Dosing Study of Iyengar Yoga and Coherent Breathing for the Treatment of Major Depressive Disorder: Impact on Suicidal Ideation and Safety Findings
BACKGROUND: Yoga interventions offer promise for the treatment of major depressive disorder (MDD), yet their safety and potential impact on suicidal ideation (SI) have not been well documented. This study evaluated the safety of a randomized controlled dose-finding trial of Iyengar yoga plus coherent breathing for individuals with MDD, as well as the potential effects of the intervention on SI without intent. METHODS: Participants with Beck Depression Inventory-II (BDI-II) scores \u3e/=14 and a diagnosis of MDD (using DSM-IV criteria) were randomized to either a low dose group (LDG) or high dose group (HDG) and received a 12-week manualized intervention. The LDG included two 90-min yoga classes plus three 30-min homework sessions weekly. The HDG offered three 90-min classes plus four 30-min homework sessions weekly. RESULTS: Thirty-two individuals with MDD were randomized, of which 30 completed the protocol. At screening, SI without intent was endorsed on the BDI-II by 9 participants; after completing the intervention, 8 out of 9 reported resolution of SI. There were 17 adverse events possibly-related and 15 definitely-related to the intervention. The most common protocol-related adverse event was musculoskeletal pain, which resolved over the course of the study. CONCLUSIONS: The Iyengar yoga plus coherent breathing intervention was associated with the resolution of SI in 8 out of 9 participants, with mild side effects that were primarily musculoskeletal in nature. This preliminary evidence suggests that this intervention may reduce SI without intent and be safe for use in those with MDD
College Binge Drinking Associated with Decreased Frontal Activation to Negative Emotional Distractors during Inhibitory Control
The transition to college is associated with an increase in heavy episodic alcohol use, or binge drinking, during a time when the prefrontal cortex and prefrontal-limbic circuitry continue to mature. Traits associated with this immaturity, including impulsivity in emotional contexts, may contribute to risky and heavy episodic alcohol consumption. The current study used blood oxygen level dependent (BOLD) multiband functional magnetic resonance imaging (fMRI) to assess brain activation during a task that required participants to ignore background images with positive, negative, or neutral emotional valence while performing an inhibitory control task (Go-NoGo). Subjects were 23 college freshmen (seven male, 18–20 years) who engaged in a range of drinking behavior (past 3 months’ binge episodes range = 0–19, mean = 4.6, total drinks consumed range = 0–104, mean = 32.0). Brain activation on inhibitory trials (NoGo) was contrasted between negative and neutral conditions and between positive and neutral conditions using non-parametric testing (5000 permutations) and cluster-based thresholding (z = 2.3), p ≤ 0.05 corrected. Results showed that a higher recent incidence of binge drinking was significantly associated with decreased activation of dorsolateral prefrontal cortex (DLPFC), dorsomedial prefrontal cortex (DMPFC), and anterior cingulate cortex (ACC), brain regions strongly implicated in executive functioning, during negative relative to neutral inhibitory trials. No significant associations between binge drinking and brain activation were observed for positive relative to neutral images. While task performance was not significantly associated with binge drinking in this sample, subjects with heavier recent binge drinking showed decreased recruitment of executive control regions under negative versus neutral distractor conditions. These findings suggest that in young adults with heavier recent binge drinking, processing of negative emotional images interferes more with inhibitory control neurocircuitry than in young adults who do not binge drink often. This pattern of altered frontal lobe activation associated with binge drinking may serve as an early marker of risk for future self-regulation deficits that could lead to problematic alcohol use. These findings underscore the importance of understanding the impact of emotion on cognitive control and associated brain functioning in binge drinking behaviors among young adults
Recommended from our members
College Binge Drinking Associated with Decreased Frontal Activation to Negative Emotional Distractors during Inhibitory Control
The transition to college is associated with an increase in heavy episodic alcohol use, or binge drinking, during a time when the prefrontal cortex and prefrontal-limbic circuitry continue to mature. Traits associated with this immaturity, including impulsivity in emotional contexts, may contribute to risky and heavy episodic alcohol consumption. The current study used blood oxygen level dependent (BOLD) multiband functional magnetic resonance imaging (fMRI) to assess brain activation during a task that required participants to ignore background images with positive, negative, or neutral emotional valence while performing an inhibitory control task (Go-NoGo). Subjects were 23 college freshmen (seven male, 18–20 years) who engaged in a range of drinking behavior (past 3 months’ binge episodes range = 0–19, mean = 4.6, total drinks consumed range = 0–104, mean = 32.0). Brain activation on inhibitory trials (NoGo) was contrasted between negative and neutral conditions and between positive and neutral conditions using non-parametric testing (5000 permutations) and cluster-based thresholding (z = 2.3), p ≤ 0.05 corrected. Results showed that a higher recent incidence of binge drinking was significantly associated with decreased activation of dorsolateral prefrontal cortex (DLPFC), dorsomedial prefrontal cortex (DMPFC), and anterior cingulate cortex (ACC), brain regions strongly implicated in executive functioning, during negative relative to neutral inhibitory trials. No significant associations between binge drinking and brain activation were observed for positive relative to neutral images. While task performance was not significantly associated with binge drinking in this sample, subjects with heavier recent binge drinking showed decreased recruitment of executive control regions under negative versus neutral distractor conditions. These findings suggest that in young adults with heavier recent binge drinking, processing of negative emotional images interferes more with inhibitory control neurocircuitry than in young adults who do not binge drink often. This pattern of altered frontal lobe activation associated with binge drinking may serve as an early marker of risk for future self-regulation deficits that could lead to problematic alcohol use. These findings underscore the importance of understanding the impact of emotion on cognitive control and associated brain functioning in binge drinking behaviors among young adults