3 research outputs found

    Individual Variability in the Venom Proteome of Juvenile <i>Bothrops jararaca</i> Specimens

    No full text
    Snake venom proteomes/peptidomes are highly complex and subject to ontogenetic changes. Individual variation in the venom proteome of juvenile snakes is poorly known. We report the proteomic analysis of venoms from 21 juvenile specimens of <i>Bothrops jararaca</i> of different geographical origins and correlate it with the evaluation of important venom features. Individual venoms showed similar caseinolytic activities; however, their amidolytic activities were significantly different. Rather intriguingly, plasma coagulant activity showed remarkable variability among the venoms but not the prothrombin-activating activity. LCā€“MS analysis showed significant differences between venoms; however, an interesting finding was the ubiquitous presence of the tripeptide ZKW, an endogenous inhibitor of metalloproteinases. Electrophoretic profiles of proteins submitted to reduction showed significant variability in total proteins, glycoproteins, and in the subproteomes of proteinases. Moreover, identification of differential bands revealed variation in most <i>B. jararaca</i> toxin classes. Profiles of venoms analyzed under nonreducing conditions showed less individual variability and identification of proteins in a conserved band revealed the presence of metalloproteinases and l-amino acid oxidase as common components of these venoms. Taken together, our findings suggest that individual venom proteome variability in <i>B. jararaca</i> exists from a very early animal age and is not a result of ontogenetic and diet changes

    Venomics Profiling of <i>Thamnodynastes strigatus</i> Unveils Matrix Metalloproteinases and Other Novel Proteins Recruited to the Toxin Arsenal of Rear-Fanged Snakes

    No full text
    Rear-fanged and aglyphous snakes are usually considered not dangerous to humans because of their limited capacity of injecting venom. Therefore, only a few studies have been dedicated to characterizing the venom of the largest parcel of snake fauna. Here, we investigated the venom proteome of the rear-fanged snake <i>Thamnodynastes strigatus</i>, in combination with a transcriptomic evaluation of the venom gland. About 60% of all transcripts code for putative venom components. A striking finding is that the most abundant type of transcript (āˆ¼47%) and also the major protein type in the venom correspond to a new kind of matrix metalloproteinase (MMP) that is unrelated to the classical snake venom metalloproteinases found in all snake families. These enzymes were recently suggested as possible venom components, and we show here that they are proteolytically active and probably recruited to venom from a MMP-9 ancestor. Other unusual proteins were suggested to be venom components: a protein related to lactadherin and an EGF repeat-containing transcript. Despite these unusual molecules, seven toxin classes commonly found in typical venomous snakes are also present in the venom. These results support the evidence that the arsenals of these snakes are very diverse and harbor new types of biologically important molecules

    Venomics Profiling of <i>Thamnodynastes strigatus</i> Unveils Matrix Metalloproteinases and Other Novel Proteins Recruited to the Toxin Arsenal of Rear-Fanged Snakes

    No full text
    Rear-fanged and aglyphous snakes are usually considered not dangerous to humans because of their limited capacity of injecting venom. Therefore, only a few studies have been dedicated to characterizing the venom of the largest parcel of snake fauna. Here, we investigated the venom proteome of the rear-fanged snake <i>Thamnodynastes strigatus</i>, in combination with a transcriptomic evaluation of the venom gland. About 60% of all transcripts code for putative venom components. A striking finding is that the most abundant type of transcript (āˆ¼47%) and also the major protein type in the venom correspond to a new kind of matrix metalloproteinase (MMP) that is unrelated to the classical snake venom metalloproteinases found in all snake families. These enzymes were recently suggested as possible venom components, and we show here that they are proteolytically active and probably recruited to venom from a MMP-9 ancestor. Other unusual proteins were suggested to be venom components: a protein related to lactadherin and an EGF repeat-containing transcript. Despite these unusual molecules, seven toxin classes commonly found in typical venomous snakes are also present in the venom. These results support the evidence that the arsenals of these snakes are very diverse and harbor new types of biologically important molecules
    corecore