13 research outputs found
Mechanism of Catch Force: Tethering of Thick and Thin Filaments by Twitchin
Catch is a mechanical state occurring in some invertebrate smooth muscles characterized
by high force maintenance and resistance to stretch during extremely slow relaxation.
During catch, intracellular calcium is near basal concentration and myosin crossbridge
cyctng rate is extremely slow. Catch force is relaxed by a protein kinase A-mediated
phosphorylation of sites near the N- and C- temini of the minititin twitchin (~526 kDa).
Some catch force maintenance car also occur together with cycling myosin crossbridges
at submaximal calcium concentrations, but not when the muscle is maximally activated.
Additionally, the link responsible for catch can adjust during shortening of submaximally
activated muscles and maintain catch force at the new shorter length. Twitchin binds to
both thick and thin filaments, and the thin filament binding shown by both the N- and Cterminal
portions of twitchin is decreased by phosphorylation of the sites that regulate
catch. The data suggest that the twitchin molecule itself is the catch force beanng tether
between thick and thin filaments. We present a model for the regulation of catch in
which the twitchin tether can be displaced from thin filaments by both (a) the
phosphorylation of twitchin and (b) the attachment of high force myosin crossbridges
Robley Dunglison: The Father of American Physiology and Jefferson\u27s Doctor
Invited Lecture for the History Section of the American Physiological Society about medical education and the founding of Jefferson\u27s medical school in the 1820’s
Catch Force Links and the Low to High Force Transition of Myosin
Catch is characterized by maintenance of force with very low energy utilization in some invertebrate muscles. Catch is regulated by phosphorylation of the mini-titin, twitchin, and a catch component of force exists at all [Ca(2+)] except those resulting in maximum force. The mechanism responsible for catch force was characterized by determining how the effects of agents that inhibit the low to high force transition of the myosin cross-bridge (inorganic phosphate, butanedione monoxime, trifluoperazine, and blebbistatin) are modified by twitchin phosphorylation and [Ca(2+)]. In permeabilized anterior byssus retractor muscles from Mytilus edulis, catch force was identified as being sensitive to twitchin phosphorylation, whereas noncatch force was insensitive. In all cases, inhibition of the low to high force transition caused an increase in catch force. The same relationship exists between catch force and noncatch force whether force is varied by changes in [Ca(2+)] and/or agents that inhibit cross-bridge force production. This suggests that myosin in the high force state detaches catch force maintaining structures, whereas myosin in the low force state promotes their formation. It is unlikely that the catch structure is the myosin cross-bridge; rather, it appears that myosin interacts with the structure, most likely twitchin, and regulates its attachment and detachment