18 research outputs found

    ATP Release from Vascular Endothelia Occurs Across Cx43 Hemichannels and Is Attenuated during Hypoxia

    Get PDF
    Background: Extracellular ATP is an important signaling molecule for vascular adaptation to limited oxygen availability (hypoxia). Here, we pursued the contribution of vascular endothelia to extracellular ATP release under hypoxic conditions. Methodology, Principal Findings: We gained first insight from studying ATP release from endothelia (HMEC-1) pre-exposed to hypoxia. Surprisingly, we found that ATP release was significantly attenuated following hypoxia exposure (2 % oxygen, 2263 % after 48 h). In contrast, intracellular ATP was unchanged. Similarly, lactate-dehydrogenase release into the supernatants was similar between normoxic or hypoxic endothelia, suggesting that differences in lytic ATP release between normoxia or hypoxia are minimal. Next, we used pharmacological strategies to study potential mechanisms for endothelialdependent ATP release (eg, verapamil, dipyridamole, 18-alpha-glycyrrhetinic acid, anandamide, connexin-mimetic peptides). These studies revealed that endothelial ATP release occurs – at least in part- through connexin 43 (Cx43) hemichannels. A real-time RT-PCR screen of endothelial connexin expression showed selective repression of Cx43 transcript and additional studies confirmed time-dependent Cx43 mRNA, total and surface protein repression during hypoxia. In addition, hypoxia resulted in Cx43-serine368 phosphorylation, which is known to switch Cx43 hemi-channels from an open to a closed state. Conclusions/Significance: Taken together, these studies implicate endothelial Cx43 in hypoxia-associated repression o

    Detrimental role of the airway mucin Muc5ac during ventilator-induced lung injury

    No full text

    Endothelial ATP release during hypoxia.

    No full text
    <p>A, To study extracellular ATP release from normoxic endothelia, monolayers of confluent HMEC-1 were washed and the culture media was replace with calcium containing HBSS. ATP content from their supernatant was sampled at indicated time points and quantified using a luminometric ATP detection assay. B, To measure extracellular ATP release under hypoxic conditions, confluent HMEC-1 monolayers were exposed to hypoxia (2% oxygen) over indicated time periods. Culture media was replaced with calcium containing HBSS and the ATP content within the supernatant was measured after 30 min incubation time. C, For intracellular ATP measurement, confluent HMEC-1 monolayers were exposed to hypoxia over indicated time periods, culture medium was discarded and cells were lysed by adding ice-cold water. ATP concentrations were measured as above. D, To measure the influence of different oxygen concentrations on endothelial ATP release, HMEC-1 were exposed to indicated degrees of hypoxia (21–2% of oxygen) over 24 h. Culture media was replaced with calcium containing HBSS and the ATP content within the supernatant was measured after 30 min incubation time. E, Confluent HMEC-1 monolayers were exposed to hypoxia as indicated. To assess lytic ATP release, LDH concentrations within the supernatant were measured by an LDH detection kit. In control experiments, cells were lysed with Triton X-100 (*p<0.01, n = 6 for all experiments).</p

    Influence of hypoxia on Connexin 43 expression.

    No full text
    <p>A, B. Confluent HMEC-1 or HUVEC monolayers were exposed to normoxia or hypoxia (2% oxygen) over indicated time periods. Total RNA was isolated and transcriptional responses were assessed by real-time reverse-transcriptase polymerase chain reaction. Data were calculated relative to an internal housekeeping gene (β-actin) and are expressed as fold change over normoxia at each time point. Results are derived from 3 experiments in each condition. C. Confluent HMEC-1 monolayers were exposed to hypoxia over indicated time periods. Cells were lysed and proteins were resolved by SDS-PAGE and transferred to PVDF-membrane. Membranes were probed with a connexin 43 antibody, proteins were detected by chemiluminescene. The same blot was reprobed for β-actin as a control for protein loading. A representative experiment of 3 is shown. D. Confluent HMEC-1 monolayers were exposed to hypoxia over indicated time periods. Monolayers were washed, surface proteins were biotinylated, and cells were lysed. Connexin 43 was immunoprecipitated, followed by addition of Protein G Microbeads. Proteins were resolved by SDS-PAGE and resultant Western blots were probed with Streptavidin. A representative experiment of 3 is shown. E. Confluent HMEC-1 monolayers were exposed to normoxia or hypoxia over indicated time periods. Cells were lysed and proteins were resolved by SDS-PAGE and transferred to PVDF-Membrane. Membranes were probed with phospho-connexin 43 antibody specific for phosphorylated ser368, and proteins were detected by chemiluminescene. The same blot was probed for β-actin as a control for protein loading. A representative of 3 is shown. In subsets of experiments, cells were pretreated with the protein kinase C inhibitor bisindolylmaleimide (10 µM; +BIM).</p

    Endothelial connexin expression.

    No full text
    <p>Confluent HMEC-1 monolayers were exposed to normoxia or hypoxia (12 h). Total RNA was isolated and real-time reverse-transcriptase polymerase chain reaction was employed to screen for transcriptional modulation of connexin expression. Data were calculated relative to an internal control gene (β-actin) and are expressed as fold change over normoxia at each time point. Results are derived from 3 experiments in each condition.</p

    Connexin-mimetic peptides in endothelial ATP release.

    No full text
    <p>A, B, Confluent HMEC-1 monolayers were washed and treated with connexin-mimetic peptides (A: Cx40 peptide, SRPTEKNVFIV, 50 µmol; B: Cx43 peptide, SRPTEKTIFII, 50 µmol). ATP content within the supernatant was measured by a luminometric ATP detection assay after an incubation period of 20 min and compared with control HMEC-1 treated with 50 µM bovine albumin (n = 6).</p

    ATP release from HMEC treated with the protein kinase C inhibitor bisindolylmaleimide (BIM).

    No full text
    <p>To study the role of Cx43 ser398 phosphorylation status in ATP release from endothelia, monolayers of confluent HMEC-1 were treated with BIM (+BIM, 10 µM) or vehicle control (-BIM), exposed to normoxia or hypoxia (24 h, 2% oxygen), washed and the culture media was replace with calcium containing HBSS. ATP content from the supernatant was sampled at indicated time points and quantified using a luminometric ATP detection assay (*p<0.05 compared to Normoxia – BIM; n = 6).</p
    corecore