108 research outputs found

    Synovial tissue macrophages: friend or foe?

    Get PDF
    Healthy synovial tissue includes a lining layer of synovial fibroblasts and macrophages. The influx of leucocytes during active rheumatoid arthritis (RA) includes monocytes that differentiate locally into proinflammatory macrophages, and these produce pathogenic tumour necrosis factor. During sustained remission, the synovial tissue macrophage numbers recede to normal. The constitutive presence of tissue macrophages in the lining layer of the synovial membrane in healthy donors and in patients with RA during remission suggests that this macrophage population may have a role in maintaining and reinstating synovial tissue homeostasis respectively. Recent appreciation of the different origins and functions of tissue-resident compared with monocyte-derived macrophages has improved the understanding of their relative involvement in organ homeostasis in mouse models of disease. In this review, informed by mouse models and human data, we describe the presence of different functional subpopulations of human synovial tissue macrophages and discuss their distinct contribution to joint homeostasis and chronic inflammation in RA

    MicroRNA-155—at the critical interface of innate and adaptive immunity in arthritis

    Get PDF
    MicroRNAs (miRNAs) are small non-coding RNAs that fine-tune the cell response to a changing environment by modulating the cell transcriptome. MiR-155 is a multifunctional miRNA enriched in cells of the immune system and is indispensable for the immune response. However, when deregulated, miR-155 contributes to the development of chronic inflammation, autoimmunity, cancer and fibrosis. Herein, we review the evidence for the pathogenic role of miR-155 in driving aberrant activation of the immune system in Rheumatoid Arthritis, and its potential as a disease biomarker and therapeutic target

    Interleukin-33 promoting Th1 lymphocyte differentiation dependents on IL-12

    Get PDF
    No abstract available.The pro-Th2 cytokine IL-33 is now emerging as an important Th1 cytokine-IFN-γ inducer in murine CD4+ T cells that is essential for protective cell-mediated immunity against viral infection in mice. However, whether IL-33 can promote human Th1 cell differentiation and how IL-33 polarizes Th1 cells is less understood. We assessed the ability of IL-33 to induce Th1 cell differentiation and IFN-γ production in vitro and in vivo. We report here that IL-33 alone had no ability in Th1 cell polarization. However it potentiated IL-12-mediated Th1 cell differentiation and IFN-γ production in TCR-stimulated murine and human CD4+ T cells in vitro and in vivo. IL-33 promoted Th1 cell development via MyD88 and synergized with IL-12 to enhance St2 and IL-12R expression in CD4+ T cells. These data therefore provide a novel mechanism for Th1 cell differentiation and optimal induction of a Type 1 response. Thus, IL-33 is capable of inducing IL-12-dependent Th1 cell differentiation in human and mouse CD4+ T cells

    Synovial tissue macrophages in joint homeostasis, rheumatoid arthritis and disease remission

    Get PDF
    Synovial tissue macrophages (STMs) were principally recognized as having a pro-inflammatory role in rheumatoid arthritis (RA), serving as the main producers of pathogenic tumour necrosis factor (TNF). Recent advances in single-cell omics have facilitated the discovery of distinct STM populations, providing an atlas of discrete phenotypic clusters in the context of healthy and inflamed joints. Interrogation of the functions of distinct STM populations, via ex vivo and experimental mouse models, has re-defined our understanding of STM biology, opening up new opportunities to better understand the pathology of the arthritic joint. These works have identified STM subpopulations that form a protective lining barrier within the synovial membrane and actively participate in the remission of RA. We discuss how distinct functions of STM clusters shape the synovial tissue environment in health, during inflammation and in disease remission, as well as how an increased understanding of STM heterogeneity might aid the prediction of clinical outcomes and inform novel treatments for RA.In this Review, the authors discuss the characterization of distinct synovial tissue macrophage (STM) populations and their functions in the context of the healthy and arthritic joint. They also describe how distinct STMs are specified, how they respond to danger signals and the clinical implications of understanding STM heterogeneity

    TAM receptors in cardiovascular disease

    Get PDF
    The TAM receptors are a distinct family of three receptor tyrosine kinases, namely Tyro3, Axl, and MerTK. Since their discovery in the early 1990s, they have been studied for their ability to influence numerous diseases, including cancer, chronic inflammatory and autoimmune disorders, and cardiovascular diseases. The TAM receptors demonstrate an ability to influence multiple aspects of cardiovascular pathology via their diverse effects on cells of both the vasculature and the immune system. In this review, we will explore the various functions of the TAM receptors and how they influence cardiovascular disease through regulation of vascular remodelling, efferocytosis and inflammation. Based on this information, we will suggest areas in which further research is required and identify potential targets for therapeutic intervention

    The role of microRNAs in glucocorticoid action - literature review

    Get PDF
    Glucocorticoids (GCs) are steroids with profound anti-inflammatory and immunomodulatory activities. Synthetic GCs are widely used for managing chronic inflammatory and autoimmune conditions, as immunosuppressants in transplantation, and as antitumor agents in certain hematological cancers. However, prolonged GC exposure can cause adverse effects. A detailed understanding of GCs' mechanisms of action may enable harnessing of their desirable actions while minimizing harmful effects. Here, we review the impact on GC biology of microRNAs, small noncoding RNAs that posttranscriptionally regulate gene expression. Emerging evidence indicates that microRNAs modulate GC production by the adrenal glands and cells' responses to GCs. Furthermore, GCs influence cell proliferation, survival, and function at least in part by regulating microRNA expression. We propose that the beneficial effects of GCs may be enhanced through combination with reagents targeting specific microRNAs

    miR-34a-/- mice are susceptible to diet-induced obesity

    Get PDF
    Objective: MicroRNA (miR)−34a regulates inflammatory pathways, and increased transcripts have been observed in serum and subcutaneous adipose of subjects who have obesity and type 2 diabetes. Therefore, the role of miR-34a in adipose tissue inflammation and lipid metabolism in murine diet-induced obesity was investigated. Methods: Wild-type (WT) and miR-34a−/− mice were fed chow or high-fat diet (HFD) for 24 weeks. WT and miR-34a−/− bone marrow-derived macrophages were cultured in vitro with macrophage colony-stimulating factor (M-CSF). Brown and white preadipocytes were cultured from the stromal vascular fraction (SVF) of intrascapular brown and epididymal white adipose tissue (eWAT), with rosiglitazone. Results: HFD-fed miR-34a−/− mice were significantly heavier with a greater increase in eWAT weight than WT. miR-34a−/− eWAT had a smaller adipocyte area, which significantly increased with HFD. miR-34a−/− eWAT showed basal increases in Cd36, Hmgcr, Lxrα, Pgc1α, and Fasn. miR-34a−/− intrascapular brown adipose tissue had basal reductions in c/ebpα and c/ebpβ, with in vitro miR-34a−/− white adipocytes showing increased lipid content. An F4/80high macrophage population was present in HFD miR-34a−/− eWAT, with increased IL-10 transcripts and serum IL-5 protein. Finally, miR-34a−/− bone marrow-derived macrophages showed an ablated CXCL1 response to tumor necrosis factor-α. Conclusions: These findings suggest a multifactorial role of miR-34a in controlling susceptibility to obesity, by regulating inflammatory and metabolic pathways

    MicroRNA-155 regulates monocyte chemokine and chemokine receptor expression in Rheumatoid Arthritis

    Get PDF
    Objectives: To test the hypothesis that miR-155 regulates monocyte migratory potential via modulation of chemokine and chemokine receptor expression in rheumatoid arthritis (RA); and thereby is associated with disease activity. Methods: miR-155 copy-number in monocytes from peripheral blood (PB) of healthy (n=22), RA (n=24), and RA synovial fluid (SF; n=11) were assessed by real time- PCR using synthetic miR-155 as quantitative standard. To evaluate the functional impact of miR-155, human monocytes were transfected with control or miR-155 mimic and the effect on transcript levels, and production of chemokines was evaluated by TLDA and multiplex assays. A comparative study evaluated constitutive chemokine receptor expression in miR-155-/- and wild-type murine (CD115+Ly6C+Ly6G-) monocytes. Results: Compared with healthy monocytes, miR-155 copy-number was higher in RA PB and SF monocytes (PB p<0.01, and SF p<0.0001). MiR-155 copy-number in RA PB monocytes were higher in ACPA positive compared with ACPA negative patients (p=0.033) and correlated (95% C.I.) with DAS28 (ESR), R=0.728 (0.460, 0.874), with tender, R=0.631 (0.306, 0.824) and swollen, R=0.503 (0.125, 0.753) joint counts. Enforced-expression of miR-155 in RA monocytes stimulated the production of CCL3, CCL4, CCL5, CCL8; up-regulated CCR7 expression and down-regulated CCR2. Conversely, miR155-/- monocytes showed down-regulated CCR7 and upregulated CCR2 expression. Conclusions: Given the observed correlations with disease activity, these data provide strong evidence that miR-155 can contribute to RA pathogenesis by regulating chemokine production and pro-inflammatory chemokine receptor expression, thereby promoting inflammatory cell recruitment and retention in the RA synovium

    MicroRNA29a regulates IL-33-mediated tissue remodelling in tendon disease

    Get PDF
    MicroRNA (miRNA) has the potential for cross-regulation and functional integration of discrete biological processes during complex physiological events. Utilizing the common human condition tendinopathy as a model system to explore the cross-regulation of immediate inflammation and matrix synthesis by miRNA we observed that elevated IL-33 expression is a characteristic of early tendinopathy. Using in vitro tenocyte cultures and in vivo models of tendon damage, we demonstrate that such IL-33 expression plays a pivotal role in the transition from type 1 to type 3 collagen (Col3) synthesis and thus early tendon remodelling. Both IL-33 effector function, via its decoy receptor sST2, and Col3 synthesis are regulated by miRNA29a. Downregulation of miRNA29a in human tenocytes is sufficient to induce an increase in Col3 expression. These data provide a molecular mechanism of miRNA-mediated integration of the early pathophysiologic events that facilitate tissue remodelling in human tendon after injury

    IL-33 promotes ST2-dependent lung fibrosis by the induction of alternatively activated macrophages and innate lymphoid cells in mice

    Get PDF
    Background<p></p> The initiation and regulation of pulmonary fibrosis are not well understood. IL-33, an important cytokine for respiratory diseases, is overexpressed in the lungs of patients with idiopathic pulmonary fibrosis.<p></p> Objectives<p></p> We aimed to determine the effects and mechanism of IL-33 on the development and severity of pulmonary fibrosis in murine bleomycin-induced fibrosis.<p></p> Methods<p></p> Lung fibrosis was induced by bleomycin in wild-type or Il33r (St2)−/− C57BL/6 mice treated with the recombinant mature form of IL-33 or anti–IL-33 antibody or transferred with type 2 innate lymphoid cells (ILC2s). The development and severity of fibrosis was evaluated based on lung histology, collagen levels, and lavage cytology. Cytokine and chemokine levels were quantified by using quantitative PCR, ELISA, and cytometry.<p></p> Results<p></p> IL-33 is constitutively expressed in lung epithelial cells but is induced in macrophages by bleomycin. Bleomycin enhanced the production of the mature but reduced full-length form of IL-33 in lung tissue. ST2 deficiency, anti–IL-33 antibody treatment, or alveolar macrophage depletion attenuated and exogenous IL-33 or adoptive transfer of ILC2s enhanced bleomycin-induced lung inflammation and fibrosis. These pathologic changes were accompanied, respectively, by reduced or increased IL-33, IL-13, TGF-β1, and inflammatory chemokine production in the lung. Furthermore, IL-33 polarized M2 macrophages to produce IL-13 and TGF-β1 and induced the expansion of ILC2s to produce IL-13 in vitro and in vivo.<p></p> Conclusions<p></p> IL-33 is a novel profibrogenic cytokine that signals through ST2 to promote the initiation and progression of pulmonary fibrosis by recruiting and directing inflammatory cell function and enhancing profibrogenic cytokine production in an ST2- and macrophage-dependent manner
    • …
    corecore