25 research outputs found

    Therapeutic Strategies in Pulmonary Arterial Hypertension

    Get PDF
    Pulmonary arterial hypertension (PAH) is a serious and life-threatening condition for which the prognosis remains poor. Treatment options include endothelial receptor antagonists, phosphodiesterase (PDE5) inhibitors and prostanoids. Despite all demonstrating good short-term efficacy, none of the currently available drug therapies are curative. Treatment with prostanoids is complex and requires careful monitoring and management through a specialist centre. Furthermore, clinical efficacy is dependent on adequate up-titration of the drug. Treatment should be individualised and modified according to clinical response, with the addition of other therapies if required. The importance of monitoring and modifying therapeutic regimes is discussed. There appears to be reluctance among patients and physicians to employ prostanoid therapy, though an aggressive first-line therapy may be appropriate in advanced cases

    Suspicion of acute aortic diseases

    No full text
    Echocardiographic evaluation of aortic syndrom

    The aorta. frequent imaging in ICU patients

    No full text
    Echocardiographic evaluation of aorta with particulary regards to ascending aort

    Laser self-mixing sensor to monitor in-situ the penetration depth during short pulse laser drilling of metal targets

    No full text
    Direct real-time measurements of the penetration depth during laser micromachining has been demonstrated by developing a novel ablation sensor based on laser diode feedback interferometry. Percussion drilling experiments have been performed by focusing a 120-ps pulsed fiber laser onto metallic targets with different thermal conductivity. In-situ monitoring of the material removal rate was achieved by coaxially aligning the beam probe with the ablating laser. The displacement of the ablation front was revealed with sub-micrometric resolution by analyzing the sawtooth-like induced modulation of the interferometric signal out of the detector system

    Direct investigation of the ablation rate evolution during laser drilling of high aspect ratio micro-holes

    No full text
    The recent development of ultrafast laser ablation technology in precision micromachining has dramatically increased the demand for reliable and real-time detection systems to characterize the material removal process. In particular, the laser percussion drilling of metals is lacking of non-invasive techniques able to monitor into the depth the spatial-and time-dependent evolution all through the ablation process. To understand the physical interaction between bulk material and high-energy light beam, accurate in-situ measurements of process parameters such as the penetration depth and the removal rate are crucial. We report on direct real time measurements of the ablation front displacement and the removal rate during ultrafast laser percussion drilling of metals by implementing a contactless sensing technique based on optical feedback interferometry. High aspect ratio micro-holes were drilled onto steel plates with different thermal properties (AISI 1095 and AISI 301) and Aluminum samples using 120-ps/110-kHz pulses delivered by a microchip laser fiber amplifier. Percussion drilling experiments have been performed by coaxially aligning the diode laser probe beam with the ablating laser. The displacement of the penetration front was instantaneously measured during the process with a resolution of 0.41 mu m by analyzing the sawtooth-like induced modulation of the interferometric signal out of the detector system
    corecore