74 research outputs found

    In vivo imaging reveals sigmoidal growth kinetic of β-amyloid plaques

    Get PDF
    A major neuropathological hallmark of Alzheimer's disease is the deposition of amyloid plaques in the brains of affected individuals. Amyloid plaques mainly consist of fibrillar β-amyloid, which is a cleavage product of the amyloid precursor protein. The amyloid-cascade-hypothesis postulates Aβ accumulation as the central event in initiating a toxic cascade leading to Alzheimer's disease pathology and, ultimately, loss of cognitive function. We studied the kinetics of β-amyloid deposition in Tg2576 mice, which overexpress human amyloid precursor protein with the Swedish mutation. Utilizing long-term two-photon imaging we were able to observe the entire kinetics of plaque growth in vivo. Essentially, we observed that plaque growth follows a sigmoid-shaped curve comprising a cubic growth phase, followed by saturation. In contrast, plaque density kinetics exhibited an asymptotic progression. Taking into account the fact that a critical concentration of Aβ is required to seed new plaques, we can propose the following kinetic model of β-amyloid deposition in vivo. In the early cubic phase, plaque growth is not limited by Aβ concentration and plaque density increases very fast. During the transition phase, plaque density stabilizes whereas plaque volume increases strongly reflecting a robust growth of the plaques. In the late asymptotic phase, Aβ peptide production becomes rate-limiting for plaque growth. In conclusion, the present study offers a direct link between in vitro and in vivo studies facilitating the translation of Aβ-lowering strategies from laboratory models to patients

    Tcf4 regulates dendritic spine density and morphology in the adult brain

    Get PDF
    Tcf4 is a transcription factor which regulates neurogenesis and neuronal migration in the brain. In humans, loss of function of Tcf4 leads to the rare neurodevelopmental disorder Pitt-Hopkins syndrome, which is characterized by intellectual disability, developmental delay and autistic behavior. We analyzed the consequences of functional loss of Tcf4 on dendritic spines in mature principal neurons. To this end, we crossed mice in which the DNA-binding domain of the Tcf4 gene is flanked by LoxP sites to mice expressing tamoxifen-inducible cre recombinase in a sparse subset of fluorescently labelled neurons (SlickV line). This resulted in a mouse model with an inducible functional knockout of Tcf4 in a subset of cortical and hippocampal neurons, in which we analyzed dendritic spines, which are the morphological correlate of excitatory postsynapses. Heterozygous as well as homozygous loss of Tcf4 led to a reduction in the number of dendritic spines in the cortex as well as in the hippocampus. This was accompanied by morphological changes of dendritic spines. These results suggest that Tcf4 is involved in synaptic plasticity in mature neurons, and functional loss of Tcf4 may contribute to the neurological symptoms in Pitt-Hopkins syndrome

    The Role of APP in Structural Spine Plasticity

    Get PDF
    Amyloid precursor protein (APP) is a transmembrane protein highly expressed in neurons. The full-length protein has cell-adhesion and receptor-like properties, which play roles in synapse formation and stability. Furthermore, APP can be cleaved by several proteases into numerous fragments, many of which affect synaptic function and stability. This review article focuses on the mechanisms of APP in structural spine plasticity, which encompasses the morphological alterations at excitatory synapses. These occur as changes in the number and morphology of dendritic spines, which correspond to the postsynaptic compartment of excitatory synapses. Both overexpression and knockout (KO) of APP lead to impaired synaptic plasticity. Recent data also suggest a role of APP in the regulation of astrocytic D-serine homeostasis, which in turn regulates synaptic plasticity

    Pathological alpha-synuclein impairs adult-born granule cell development and functional integration in the olfactory bulb

    Get PDF
    Although the role of noxious alpha-synuclein (alpha-SYN) in the degeneration of midbrain dopaminergic neurons and associated motor deficits of Parkinson's disease is recognized, its impact on non-motor brain circuits and related symptoms remains elusive. Through combining in vivo two-photon imaging with time-coded labelling of neurons in the olfactory bulb of A30P alpha-SYN transgenic mice, we show impaired growth and branching of dendrites of adult-born granule cells (GCs),with reduced gain and plasticity of dendritic spines. The spine impairments are especially pronounced during the critical phase of integration of new neurons into existing circuits. Functionally, retarded dendritic expansion translates into reduced electrical capacitance with enhanced intrinsic excitability and responsiveness of GCs to depolarizing inputs, while the spine loss correlates with decreased frequency of AMPA-mediated miniature EPSCs. Changes described here are expected to interfere with the functional integration and survival of new GCs into bulbar networks, contributing towards olfactory deficits and related behavioural impairments

    The brain-specific double-stranded RNA-binding protein Staufen2 is required for dendritic spine morphogenesis

    Get PDF
    Mammalian Staufen2 (Stau2) is a member of the double-stranded RNA-binding protein family. Its expression is largely restricted to the brain. It is thought to play a role in the delivery of RNA to dendrites of polarized neurons. To investigate the function of Stau2 in mature neurons, we interfered with Stau2 expression by RNA interference (RNAi). Mature neurons lacking Stau2 displayed a significant reduction in the number of dendritic spines and an increase in filopodia-like structures. The number of PSD95-positive synapses and miniature excitatory postsynaptic currents were markedly reduced in Stau2 down-regulated neurons. Akin effects were caused by overexpression of dominant-negative Stau2. The observed phenotype could be rescued by overexpression of two RNAi cleavage-resistant Stau2 isoforms. In situ hybridization revealed reduced expression levels of β-actin mRNA and fewer dendritic β-actin mRNPs in Stau2 down-regulated neurons. Thus, our data suggest an important role for Stau2 in the formation and maintenance of dendritic spines of hippocampal neurons

    Extent, pattern, and prognostic value of MGMT promotor methylation: does it differ between glioblastoma and IDH-wildtype/TERT-mutated astrocytoma?

    Get PDF
    INTRODUCTION The cIMPACT-NOW update 6 first introduced glioblastoma diagnosis based on the combination of IDH-wildtype (IDHwt) status and TERT promotor mutation (pTERTmut). In glioblastoma as defined by histopathology according to the WHO 2016 classification, MGMT promotor status is associated with outcome. Whether this is also true in glioblastoma defined by molecular markers is yet unclear. METHODS We searched the institutional database for patients with: (1) glioblastoma defined by histopathology; and (2) IDHwt astrocytoma with pTERTmut. MGMT promotor methylation was analysed using methylation-specific PCR and Sanger sequencing of CpG sites within the MGMT promotor region. RESULTS We identified 224 patients with glioblastoma diagnosed based on histopathology, and 54 patients with IDHwt astrocytoma with pTERTmut (19 astrocytomas WHO grade II and 38 astrocytomas WHO grade III). There was no difference in the number of MGMT methylated tumors between the two cohorts as determined per PCR, and also neither the number nor the pattern of methylated CpG sites differed as determined per Sanger sequencing. Progression-free (PFS) and overall survival (OS) was similar between the two cohorts when treated with radio- or chemotherapy. In both cohorts, higher numbers of methylated CpG sites were associated with favourable outcome. CONCLUSIONS Extent and pattern of methylated CpG sites are similar in glioblastoma and IDHwt astrocytoma with pTERTmut. In both tumor entities, higher numbers of methylated CpG sites appear associated with more favourable outcome. Evaluation in larger prospective cohorts is warranted

    High plasticity of axonal pathology in Alzheimer's disease mouse models

    Get PDF
    Axonal dystrophies (AxDs) are swollen and tortuous neuronal processes that are associated with extracellular depositions of amyloid beta (Abeta) and have been observed to contribute to synaptic alterations occurring in Alzheimer's disease. Understanding the temporal course of this axonal pathology is of high relevance to comprehend the progression of the disease over time. We performed a long-term in vivo study (up to 210 days of two-photon imaging) with two transgenic mouse models (dE9xGFP-M and APP-PS1xGFP-M). Interestingly, AxDs were formed only in a quarter of GFP-expressing axons near Abeta-plaques, which indicates a selective vulnerability. AxDs, especially those reaching larger sizes, had long lifetimes and appeared as highly plastic structures with large variations in size and shape and axonal sprouting over time. In the case of the APP-PS1 mouse only, the formation of new long axonal segments in dystrophic axons (re-growth phenomenon) was observed. Moreover, new AxDs could appear at the same point of the axon where a previous AxD had been located before disappearance (re-formation phenomenon). In addition, we observed that most AxDs were formed and developed during the imaging period, and numerous AxDs had already disappeared by the end of this time. This work is the first in vivo study analyzing quantitatively the high plasticity of the axonal pathology around Abeta plaques. We hypothesized that a therapeutically early prevention of Abeta plaque formation or their growth might halt disease progression and promote functional axon regeneration and the recovery of neural circuits

    High plasticity of axonal pathology in Alzheimer's disease mouse models

    Get PDF
    Axonal dystrophies (AxDs) are swollen and tortuous neuronal processes that are associated with extracellular depositions of amyloid beta (Abeta) and have been observed to contribute to synaptic alterations occurring in Alzheimer's disease. Understanding the temporal course of this axonal pathology is of high relevance to comprehend the progression of the disease over time. We performed a long-term in vivo study (up to 210 days of two-photon imaging) with two transgenic mouse models (dE9xGFP-M and APP-PS1xGFP-M). Interestingly, AxDs were formed only in a quarter of GFP-expressing axons near Abeta-plaques, which indicates a selective vulnerability. AxDs, especially those reaching larger sizes, had long lifetimes and appeared as highly plastic structures with large variations in size and shape and axonal sprouting over time. In the case of the APP-PS1 mouse only, the formation of new long axonal segments in dystrophic axons (re-growth phenomenon) was observed. Moreover, new AxDs could appear at the same point of the axon where a previous AxD had been located before disappearance (re-formation phenomenon). In addition, we observed that most AxDs were formed and developed during the imaging period, and numerous AxDs had already disappeared by the end of this time. This work is the first in vivo study analyzing quantitatively the high plasticity of the axonal pathology around Abeta plaques. We hypothesized that a therapeutically early prevention of Abeta plaque formation or their growth might halt disease progression and promote functional axon regeneration and the recovery of neural circuits

    Multifocal high-grade glioma radiotherapy safety and efficacy

    Get PDF
    BACKGROUND Multifocal manifestation of high-grade glioma is a rare disease with very unfavourable prognosis. The pathogenesis of multifocal glioma and pathophysiological differences to unifocal glioma are not fully understood. The optimal treatment of patients suffering from multifocal high-grade glioma is not defined in the current guidelines, therefore individual case series may be helpful as guidance for clinical decision-making. METHODS Patients with multifocal high-grade glioma treated with conventionally fractionated radiation therapy (RT) in our institution with or without concomitant chemotherapy between April 2011 and April 2019 were retrospectively analysed. Multifocality was neuroradiologically assessed and defined as at least two independent contrast-enhancing foci in the MRI T1 contrast-enhanced sequence. IDH mutational status and MGMT methylation status were assessed from histopathology records. GTV, PTV as well as the V30Gy, V45Gy and D2% volumes of the brain were analysed. Overall and progression-free survival were calculated from the diagnosis until death and from start of radiation therapy until diagnosis of progression of disease in MRI for all patients. RESULTS 20 multifocal glioma cases (18 IDH wild-type glioblastoma cases, one diffuse astrocytic glioma, IDH wild-type case with molecular features of glioblastoma and one anaplastic astrocytoma, IDH wild-type case) were included into the analysis. Resection was performed in two cases and stereotactic biopsy only in 18 cases before the start of radiation therapy. At the start of radiation therapy patients were 61~years old in median (range 42-84~years). Histopathological examination showed IDH wild-type in all cases and MGMT promotor methylation in 11 cases (55%). Prescription schedules were 60~Gy (2~Gy × 30), 59.4~Gy (1.8~Gy × 33), 55~Gy (2.2~Gy × 25) and 50~Gy (2.5~Gy × 20) in 15, three, one and one cases, respectively. Concomitant temozolomide chemotherapy was applied in 16 cases, combined temozolomide/lomustine chemotherapy was applied in one case and concomitant bevacizumab therapy in one case. Median number of GTVs was three. Median volume of the sum of the GTVs was 26 cm3. Median volume of the PTV was 425.7 cm3 and median PTV to brain ratio 32.8 percent. Median D2% of the brain was 61.5~Gy (range 51.2-62.7) and median V30Gy and V45 of the brain were 59.9 percent (range 33-79.7) and 40.7 percent (range 14.9-64.1), respectively. Median survival was eight months (95% KI 3.6-12.4~months) and median progression free survival after initiation of RT five months (95% CI 2.8-7.2~months). Grade 2 toxicities were detected in eight cases and grade 3 toxicities in four cases consisting of increasing edema in three cases and one new-onset seizure. One grade 4 toxicity was detected, which was febrile neutropenia related to concomitant chemotherapy. CONCLUSION Conventionally fractionated RT with concomitant chemotherapy could safely be applied in multifocal high-grade glioma in this case series despite large irradiation treatment fields
    corecore