4,573 research outputs found

    Electron microscopic determination of the metastable dissociation region in the system Li sub 2SiO3-SiO sub 2

    Get PDF
    Seven glasses with an alkali oxide content in the range 9.57 to 29.53 mole percent were investigated. The temperature at which the transition of microheterogeneous mixing to the condition of mutual solubility occurs on heating is found. It is found that the altered constituent composition results in the alteration in the percentage amount of the coexisting phases

    Strongly Enhanced Low Energy Alpha-Particle Decay in Heavy Actinide Nuclei and Long-Lived Superdeformed and Hyperdeformed Isomeric States

    Full text link
    Relatively low energy and very enhanced alpha-particle groups have been observed in various actinide fractions produced via secondary reactions in a CERN W target which had been irradiated with 24-GeV protons. In particular, 5.14, 5.27 and 5.53 MeV alpha-particle groups with corresponding half-lives of 3.8(+ -)1.0 y, 625(+ -)84 d and 26(+ -)7 d, have been seen in Bk, Es and Lr-No sources, respectively. The measured energies are a few MeV lower than the known g.s. to g.s. alpha-decays in the corresponding neutron-deficient actinide nuclei. The half-lives are 4 to 7 orders of magnitude shorter than expected from the systematics of alpha-particle decay in this region of nuclei. The deduced evaporation residue cross sections are in the mb region, about 4 orders of magnitude higher than expected. A consistent interpretation of the data is given in terms of production of long-lived isomeric states in the second and third wells of the potential-energy surfaces of the parent nuclei, which decay to the corresponding wells in the daughters. The possibility that the isomeric states in the third minimum are actually the true or very near the true ground states of the nuclei, and consequences regarding the production of the long-lived superheavy elements, are discussed.Comment: 27 pages including 8 figures and 4 table

    Exact Evolution Operator on Non-compact Group Manifolds

    Full text link
    Free quantal motion on group manifolds is considered. The Hamiltonian is given by the Laplace -- Beltrami operator on the group manifold, and the purpose is to get the (Feynman's) evolution kernel. The spectral expansion, which produced a series of the representation characters for the evolution kernel in the compact case, does not exist for non-compact group, where the spectrum is not bounded. In this work real analytical groups are investigated, some of which are of interest for physics. An integral representation for the evolution operator is obtained in terms of the Green function, i.e. the solution to the Helmholz equation on the group manifold. The alternative series expressions for the evolution operator are reconstructed from the same integral representation, the spectral expansion (when exists) and the sum over classical paths. For non-compact groups, the latter can be interpreted as the (exact) semi-classical approximation, like in the compact case. The explicit form of the evolution operator is obtained for a number of non-compact groups.Comment: 32 pages, 5 postscript figures, LaTe
    • …
    corecore