2 research outputs found

    Ventral and dorsal aspects of the inferior frontal-occipital fasciculus support verbal semantic access and visually-guided behavioural control

    Get PDF
    The Inferior Frontal Occipital Fasciculus (IFOF) is a major anterior-to-posterior white matter pathway in the ventral human brain that connects parietal, temporal and occipital regions to frontal cortex. It has been implicated in a range of functions, including language, semantics, inhibition and the control of action. The recent research shows that the IFOF can be sub-divided into a ventral and dorsal branch, but the functional relevance of this distinction, as well as any potential hemispheric differences, are poorly understood. Using DTI tractography, we investigated the involvement of dorsal and ventral subdivisions of the IFOF in the left and right hemisphere in a response inhibition task (Go/No-Go), where the decision to respond or to withhold a prepotent response was made on the basis of semantic or non-semantic aspects of visual inputs. The task also varied the presentation modality (whether concepts were presented as written words or images). The results showed that the integrity of both dorsal and ventral IFOF in the left hemisphere were associated with participants’ inhibition performance when the signal to stop was meaningful and presented in the verbal modality. This effect was absent in the right hemisphere. The integrity of dorsal IFOF was also associated with participants’ inhibition efficiency in difficult perceptually guided decisions. This pattern of results indicates that left dorsal IFOF is implicated in the domain-general control of visually-guided behaviour, while the left ventral branch might interface with the semantic system to support the control of action when the inhibitory signal is based on meaning

    How do valence and meaning interact? The contribution of semantic control

    No full text
    The hub-and-spoke model of semantic cognition proposes that conceptual representations in a heteromodal ‘hub’ interact with and emerge from modality-specific features or ‘spokes’, including valence (whether a concept is positive or negative), along with visual and auditory features. As a result, valence congruency might facilitate our ability to link words conceptually. Semantic relatedness may similarly affect explicit judgements about valence. Moreover, conflict between meaning and valence may recruit semantic control processes. Here we tested these predictions using two-alternative forced-choice tasks, in which participants matched a probe word to one of two possible target words, based on either global meaning or valence. Experiment 1 examined timed responses in healthy young adults, while Experiment 2 examined decision accuracy in semantic aphasia patients with impaired controlled semantic retrieval following left hemisphere stroke. Across both experiments, semantically-related targets facilitated valence matching, while related distractors impaired performance. Valence congruency was also found to facilitate semantic decision-making. People with semantic aphasia showed impaired valence matching and had particular difficulty when semantically-related distractors were presented, suggesting that the selective retrieval of valence information relies on semantic control processes. Taken together, the results are consistent with the hypothesis that automatic access to the global meaning of written words affects the processing of valence, and that the valence of words is also retrieved even when this feature is task-irrelevant, affecting the efficiency of global semantic judgements
    corecore