486 research outputs found

    A new method for complexity determination by using fractals and its applications in material surface characteristics

    Get PDF
    In this article, a new method for complexity determination by using fractals in combination with an artificial intelligent approach is proposed and its application in laser hardening technology is detailed. In particular, nanoindentation tests were applied as a way to investigate the hardness properties of tool steel alloys with respect to both marginal and relevant changes in laser hardening parameters. Specifically, process duration and temperature were considered, together with nanoindentation, later related to surface characteristics by image analysis and Hurst exponent determination. Three different Machine Learning algorithms (Random Forest, Support Vector Machine and k-Nearest Neighbors) were used and predictions compared with measures in terms of mean, variability and linear correlation. Evidences confirmed the general applicability of this method, based on integrating fractals for microstructure analysis and machine learning for their deep understanding, in material science and process engineering

    Purification of two hexosaminidases from human kidney

    Full text link

    Power series determined by an experiment on the unit interval

    Full text link
    We consider the linear combinations of elements of two sequences: the first one a priory given nonnegative sequence and the second random sequence from the unit interval. We investigate the expected value of the smallest natural number such that the value of these linear combinations exceed a positive number. After very clear geometrical conclusions, we find the function which expresses the expected value. Here, we recognize a few known results like the special cases.Comment: 9 pages, 5 figure

    Modelling the Surface Roughness of Steel after Laser hardening by using 2D Visibility Network, Convolutional neural Networks and Genetic Programming

    Get PDF
    The surface characterization of materials after Robot Laser Hardening (RLH) is a technically demanding procedure. RLH is commonly used to harden parts, especially when subject to wear. By changing their surface properties, this treatment can offer several benefits such as lower costs for additional machining, no use of cooling agents or chemicals, high flexibility, local hardening, minimal deformation, high accuracy, and automated and integrated process in the production process. However, the surface roughness strongly depends on the heat treatment and parameters used in the process. This article used a network theory approach (i.e., the visibility network in 2D space) to analyze the surface roughness of tool steel EN100083-1 upon RLH. Specifically, two intelligent methods were merged in this investigation. Firstly, a genetic algorithm was applied to derive a relationship between the parameters of the robot laser cell and topological surface properties. Furthermore, convolutional neural networks allowed the assessment of surface roughness based on 2D photographic image

    Carbide Type Influence on Tribological Properties of Hard Faced Steel Layer - Part I - Theoretical Considerations

    Get PDF
    This paper gives a theoretical review of influence of the most important alloying elements on steel, and review of the most important carbide-forming elements and states the conditions which elements should fulfill in order to be considered as carbide-forming. It primarily involves alloying elements which in the iron-carbon system can form simple, complex or special carbides, i.e. phases of interstitial and substitutive type. It also gives a review of carbide types that are formed during either production or reparatory hard facing of steel parts with different types of filler materials

    DEVELOPMENT AND OPTIMIZATION OF CARVEDILOL FORMULATION USING EXPERIMENTAL DESIGN

    Get PDF
    The aim of this paper was to develop and optimize the carvedilol tablets formulation using the full factorial design. The content of binder (PVP K30), content of disintegrant (crospovidone) and main compression force were used as the independent variables. Tablets were prepared by wet granulation. The percentage of released carvedilol from prepared formulation after 10 minutes was defined as the response. It has been found that formulation with the low content of binding agents (4.8%), high content of disintegrant (4.5%) and compression force of 50 N has the best profile of drug. The optimal formulation was defined based on implementation of pharmaceuticaltechnological tests (testing strength, friability, disintegrating, contents of drug substance, drug release profiles). The stability of the optimal formulation with carvedilol was estimated using the aging tests

    Kinematic magnetic resonance imaging study of the brain stem and cervical cord by dynamic neck motion

    Get PDF
    Background: The aim was to examine the position of the brain stem and cervical cord following the neck flexion and extension. Materials and methods: The serial sagittal T2-weighted magnetic resonance imaging (MRI) sections of the cervical cord and brain stem were made in 6 volunteers. The images were mainly used to measure certain distances and angles of the brain stem and cervical cord in the neutral position, and then following the head and neck flexion and extension. Results: The measurements showed that the pons is slightly closer to the clivus following the neck flexion; the medulla oblongata is somewhat distant to the basion but closer to the odontoid process. At the same time, the spino-medullary angle diminishes in size. On the other hand, the upper cervical cord slightly approaches the posterior wall of the spinal canal, the lower cervical cord is closer to the anterior wall, while the angle between them is significantly larger in size. After the cervical cord extension, the rostral pons is somewhat distant to the clivus, whereas the caudal pons and the medulla are slightly closer to the clivus and the basion. At the same time, the spino-medullary angle diminishes in size. The cervical cord is mainly closer to the posterior wall of the spinal canal, whilst its angle is significantly smaller. Conclusions: The obtained results regarding the brain stem and cervical cord motion can be useful in the kinetic MRI examination of certain congenital disorders, degenerative diseases, and traumatic injuries of the craniovertebral junction and the cervical spine
    corecore