1,176 research outputs found

    Quantum Hall Spherical Systems: the Filling Fraction

    Get PDF
    Within the newly formulated composite fermion hierarchy the filling fraction of a spherical quantum Hall system is obtained when it can be expressed as an odd or even denominator fraction. A plot of Îœ2SN−1\nu\frac{2S}{N-1} as a function of 2S2S for a constant number of particles (up to N=10001) exhibits structure of the fractional quantum Hall effect. It is confirmed that Îœe+Îœh=1\nu_e +\nu_h=1 for all particle-hole conjugate systems, except systems with Ne=NhN_e =N_h, and Ne=Nh±1N_e=N_h \pm 1.Comment: 3 pages, Revtex, 7 PostScript figures, submitted to Phys. Rev. B Rapid Communicatio

    Evaporative cooling of trapped fermionic atoms

    Full text link
    We propose an efficient mechanism for the evaporative cooling of trapped fermions directly into quantum degeneracy. Our idea is based on an electric field induced elastic interaction between trapped atoms in spin symmetric states. We discuss some novel general features of fermionic evaporative cooling and present numerical studies demonstrating the feasibility for the cooling of alkali metal fermionic species 6^6Li, 40^{40}K, and 82,84,86^{82,84,86}Rb. We also discuss the sympathetic cooling of fermionic hyperfine spin mixtures, including the effects of anisotropic interactions.Comment: to be publishe

    Retarded long-range potentials for the alkali-metal atoms and a perfectly conducting wall

    Get PDF
    The retarded long-range potentials for hydrogen and alkali-metal atoms in their ground states and a perfectly conducting wall are calculated. The potentials are given over a wide range of atom-wall distances and the validity of the approximations used is established.Comment: RevTeX, epsf, 11 pages, 2 fig

    Szeg\"o kernel asymptotics and Morse inequalities on CR manifolds

    Full text link
    We consider an abstract compact orientable Cauchy-Riemann manifold endowed with a Cauchy-Riemann complex line bundle. We assume that the manifold satisfies condition Y(q) everywhere. In this paper we obtain a scaling upper-bound for the Szeg\"o kernel on (0, q)-forms with values in the high tensor powers of the line bundle. This gives after integration weak Morse inequalities, analogues of the holomorphic Morse inequalities of Demailly. By a refined spectral analysis we obtain also strong Morse inequalities which we apply to the embedding of some convex-concave manifolds.Comment: 40 pages, the constants in Theorems 1.1-1.8 have been modified by a multiplicative constant 1/2 ; v.2 is a final updat

    Low energy atomic collision with dipole interactions

    Get PDF
    We apply quantum defect theory to study low energy ground state atomic collisions including aligned dipole interactions such as those induced by an electric field. Our results show that coupled even (ll) relative orbital angular momentum partial wave channels exhibit shape resonance structures while odd (ll) channels do not. We analyze and interpret these resonances within the framework of multichannel quantum defect theory (MQDT).Comment: 27 pages, 17 figures, an inadvertent typo correcte

    Zeros of Rydberg-Rydberg Foster Interactions

    Full text link
    Rydberg states of atoms are of great current interest for quantum manipulation of mesoscopic samples of atoms. Long-range Rydberg-Rydberg interactions can inhibit multiple excitations of atoms under the appropriate conditions. These interactions are strongest when resonant collisional processes give rise to long-range C_3/R^3 interactions. We show in this paper that even under resonant conditions C_3 often vanishes so that care is required to realize full dipole blockade in micron-sized atom samples.Comment: 10 pages, 4 figures, submitted to J. Phys.

    Macrodimers: ultralong range Rydberg molecules

    Full text link
    We study long range interactions between two Rydberg atoms and predict the existence of ultralong range Rydberg dimers with equilibrium distances of many thousand Bohr radii. We calculate the dispersion coefficients C5C_{5}, C6C_{6} and C8C_{8} for two rubidium atoms in the same excited level npnp, and find that they scale like n8n^{8}, n11n^{11} and n15n^{15}, respectively. We show that for certain molecular symmetries, these coefficients lead to long range potential wells that can support molecular bound levels. Such macrodimers would be very sensitive to their environment, and could probe weak interactions. We suggest experiments to detect these macrodimers.Comment: 4 pages, submitted to PR

    Spin polarization in a two-dimensional electron gas

    Full text link
    We evaluate the charge and longitudinal spin response functions of a two-dimensional electron gas with e2/re^2/r interactions in an arbitrary state of spin polarization, using a structurally self-consistent approach to treat exchange and correlations. From the results we assess the nature of the magnetic order in the electronic ground state in zero magnetic field as a function of electron density. We find that states of partial spin polarization are thermodynamically unstable at all values of the coupling strength and that a first-order phase transition occurs with increasing coupling strength from the magnetically disorderd (paramagnetic) phase to the fully spin-polarized (ferromagnetic) phase. This behavior is in qualitative agreement with diffusion Monte Carlo data, although the location of the phase transition is underestimated in our calculations.Comment: 12 pages, 10 figuer

    Noncommutative polynomial maps

    Get PDF
    Accepté pour publication dans "Journal of Algebra and its applications"; 16 pages.Polynomial maps attached to polynomials of an Ore extension are naturally defi ned. In this setting we show the importance of pseudo-linear transformations and give some applications. In particular, factorizations of polynomials in an Ore extension over a fi nite fi eld F_q[t;S ], where S is the Frobenius automorphism, are translated into factorizations in the usual polynomial ring F_q[x]

    Prospects for p-wave paired BCS states of fermionic atoms

    Full text link
    We present theoretical prospects for creating p-wave paired BCS states of magnetic trapped fermionic atoms. Based on our earlier proposal of using dc electric fields to control both the strength and anisotropic characteristic of atom-atom interaction and our recently completed multi-channel atomic collision calculations we discover that p-wave pairing with 40^{40}K and 82,84,86^{82,84,86}Rb in the low field seeking maximum spin polarized state represent excellent choices for achieving superfluid BCS states; and may be realizable with current technology in laser cooling, magnetic trapping, and evaporative/sympathetic cooling, provided the required strong electric field can be applied. We also comment on the prospects of similar p-wave paired BCS states in 6^{6}Li, and more generally on creating other types exotic BCS states. Our study will open a new area in the vigorous pursuit to create a quantum degenerate fermionic atom vapor.Comment: to be publishe
    • 

    corecore