10 research outputs found

    The catecholamine biosynthetic enzyme dopamine β-hydroxylase (DBH): first genome-wide search positions trait-determining variants acting additively in the proximal promoter

    No full text
    Dopamine beta-hydroxylase (DBH) is the biosynthetic enzyme catalyzing formation of norepinephrine. Changes in DBH expression or activity have been implicated in the pathogenesis of cardiovascular and neuropsychiatric disorders. Genetic determination of DBH enzymatic activity and its secretion are only incompletely understood. We began with a genome-wide association search for loci contributing to DBH activity in human plasma. Initially, in a population sample of European ancestry, we identified the proximal DBH promoter as a region harboring three common trait-determining variants (top hit rs1611115, P = 7.2 × 10(−51)). We confirmed their effects on transcription and showed that the three variants each acted additively on gene expression. Results were replicated in a population sample of Native American descent (top hit rs1611115, P = 4.1 × 10(−15)). Jointly, DBH variants accounted for 57% of DBH trait variation. We further identified a genome-wide significant SNP at the LOC338797 locus on chromosome 12 as trans-quantitative trait locus (QTL) (rs4255618, P = 4.62 × 10(−8)). Conditional analyses on DBH identified a third genomic region contributing to DBH variation: a likely cis-QTL adjacent to DBH in SARDH (rs7040170, P = 1.31 × 10(−14)) on chromosome 9q. We conclude that three common SNPs in the DBH promoter act additively to control phenotypic variation in DBH levels, and that two additional novel loci (SARDH and LOC338797) may also contribute to the expression of this catecholamine biosynthetic trait. Identification of DBH variants with strong effects makes it possible to take advantage of Mendelian randomization approaches to test causal effects of this intermediate trait on disease

    Heart rate variability characteristics in a large group of active-duty marines and relationship to posttraumatic stress.

    No full text
    ObjectiveHeart rate variability (HRV), thought to reflect autonomic nervous system function, is lowered under conditions such as posttraumatic stress disorder (PTSD). The potential confounding effects of traumatic brain injury (TBI) and depression in the relationship between HRV and PTSD have not been elucidated in a large cohort of military service members. Here we describe HRV associations with stress disorder symptoms in a large study of Marines while accounting for well-known covariates of HRV and PTSD including TBI and depression.MethodsFour battalions of male active-duty Marines (n = 2430) were assessed 1 to 2 months before a combat deployment. HRV was measured during a 5-minute rest. Depression and PTSD were assessed using the Beck Depression Inventory and Clinician-Administered PTSD Scale, respectively.ResultsWhen adjusting for covariates, including TBI, regression analyses showed that lower levels of high-frequency HRV were associated with a diagnosis of PTSD (β = -0.20, p = .035). Depression and PTSD severity were correlated (r = 0.49, p < .001); however, participants with PTSD but relatively low depression scores exhibited reduced high frequency compared with controls (p = .012). Marines with deployment experience (n = 1254) had lower HRV than did those with no experience (p = .033).ConclusionsThis cross-sectional analysis of a large cohort supports associations between PTSD and reduced HRV when accounting for TBI and depression symptoms. Future postdeployment assessments will be used to determine whether predeployment HRV can predict vulnerability and resilience to the serious psychological and physiological consequences of combat exposure

    Association of Predeployment Heart Rate Variability With Risk of Postdeployment Posttraumatic Stress Disorder in Active-Duty Marines.

    No full text
    ImportanceDisrupted autonomic nervous system functioning as measured by heart rate variability (HRV) has been associated with posttraumatic stress disorder (PTSD). It is not clear, however, whether reduced HRV before trauma exposure contributes to the risk for development of PTSD.ObjectiveTo examine whether HRV before combat deployment is associated with increased risk of a PTSD diagnosis after deployment when accounting for deployment-related combat exposure.Design, setting, and participantsBetween July 14, 2008, and May 24, 2012, active-duty Marines were assessed 1 to 2 months before a combat deployment and again 4 to 6 months after their return. The first phase of the Marine Resiliency Study (MRS-I) included 1415 male Marines, 59 of whom developed PTSD after deployment. Participants in the second phase of the Marine Resiliency Study (MRS-II) included 745 male Marines, 25 of whom developed PTSD after deployment. Analysis was conducted from November 25, 2013, to April 16, 2015.Main outcomes and measuresPredeployment HRV was measured via finger photoplethysmography during a 5-minute period of rest. Frequency-domain measures of HRV were generated. Diagnosis of PTSD was determined using the Clinician-Administered PTSD Scale.ResultsAfter accounting for deployment-related combat exposure, lower HRV before deployment as measured by an increased low-frequency (LF) to high-frequency (HF) ratio of HRV was associated with risk of PTSD diagnosis after deployment (combined MRS-I and MRS-II cohort meta-analysis odds ratio, 1.47; 95% CI, 1.10-1.98; P = .01). The prevalence of postdeployment PTSD was higher in participants with high predeployment LF:HF ratios (15.8% [6 of 38 participants]) compared with participants who did not have high LF:HF ratios (3.7% [78 of 2122 participants]).Conclusions and relevanceThis prospective longitudinal study provides initial and modest evidence that an altered state of autonomic nervous system functioning contributes to PTSD vulnerability, taking into account other key risk factors. If these findings are replicated, interventions that change autonomic nervous system function may open novel opportunities for prevention and treatment of PTSD

    Assessment of plasma C-reactive protein as a biomarker of posttraumatic stress disorder risk.

    No full text
    ImportancePosttraumatic stress disorder (PTSD) has been associated in cross-sectional studies with peripheral inflammation. It is not known whether this observed association is the result of PTSD predisposing to inflammation (as sometimes postulated) or to inflammation predisposing to PTSD.ObjectiveTo determine whether plasma concentration of the inflammatory marker C-reactive protein (CRP) helps predict PTSD symptoms.Design, setting, and participantsThe Marine Resiliency Study, a prospective study of approximately 2600 war zone-deployed Marines, evaluated PTSD symptoms and various physiological and psychological parameters before deployment and at approximately 3 and 6 months following a 7-month deployment. Participants were recruited from 4 all-male infantry battalions imminently deploying to a war zone. Participation was requested of 2978 individuals; 2610 people (87.6%) consented and 2555 (85.8%) were included in the present analysis. Postdeployment data on combat-related trauma were included for 2208 participants (86.4% of the 2555 included) and on PTSD symptoms at 3 and 6 months after deployment for 1861 (72.8%) and 1617 (63.3%) participants, respectively.Main outcomes and measuresSeverity of PTSD symptoms 3 months after deployment assessed by the Clinician-Administered PTSD Scale (CAPS).ResultsWe determined the effects of baseline plasma CRP concentration on postdeployment CAPS using zero-inflated negative binomial regression (ZINBR), a procedure designed for distributions, such as CAPS in this study, that have an excess of zeroes in addition to being positively skewed. Adjusting for the baseline CAPS score, trauma exposure, and other relevant covariates, we found baseline plasma CRP concentration to be a highly significant overall predictor of postdeployment CAPS scores (P = .002): each 10-fold increment in CRP concentration was associated with an odds ratio of nonzero outcome (presence vs absence of any PTSD symptoms) of 1.51 (95% CI, 1.15-1.97; P = .003) and a fold increase in outcome with a nonzero value (extent of symptoms when present) of 1.06 (95% CI, 0.99-1.14; P = .09).ConclusionsAND RELEVANCE A marker of peripheral inflammation, plasma CRP may be prospectively associated with PTSD symptom emergence, suggesting that inflammation may predispose to PTSD

    Association between traumatic brain injury and risk of posttraumatic stress disorder in active-duty Marines.

    No full text
    ImportanceWhether traumatic brain injury (TBI) is a risk factor for posttraumatic stress disorder (PTSD) has been difficult to determine because of the prevalence of comorbid conditions, overlapping symptoms, and cross-sectional samples.ObjectiveTo examine the extent to which self-reported predeployment and deployment-related TBI confers increased risk of PTSD when accounting for combat intensity and predeployment mental health symptoms.Design, setting, and participantsAs part of the prospective, longitudinal Marine Resiliency Study (June 2008 to May 2012), structured clinical interviews and self-report assessments were administered approximately 1 month before a 7-month deployment to Iraq or Afghanistan and again 3 to 6 months after deployment. The study was conducted at training areas on a Marine Corps base in southern California or at Veterans Affairs San Diego Medical Center. Participants for the final analytic sample were 1648 active-duty Marine and Navy servicemen who completed predeployment and postdeployment assessments. Reasons for exclusions were nondeployment (n = 34), missing data (n = 181), and rank of noncommissioned and commissioned officers (n = 66).Main outcomes and measuresThe primary outcome was the total score on the Clinician-Administered PTSD Scale (CAPS) 3 months after deployment.ResultsAt the predeployment assessment, 56.8% of the participants reported prior TBI; at postdeployment assessment, 19.8% reported sustaining TBI between predeployment and postdeployment assessments (ie, deployment-related TBI). Approximately 87.2% of deployment-related TBIs were mild; 250 of 287 participants (87.1%) who reported posttraumatic amnesia reported less than 24 hours of posttraumatic amnesia (37 reported ≥ 24 hours), and 111 of 117 of those who lost consciousness (94.9%) reported less than 30 minutes of unconsciousness. Predeployment CAPS score and combat intensity score raised predicted 3-month postdeployment CAPS scores by factors of 1.02 (P < .001; 95% CI, 1.02-1.02) and 1.02 (P < .001; 95% CI, 1.01-1.02) per unit increase, respectively. Deployment-related mild TBI raised predicted CAPS scores by a factor of 1.23 (P < .001; 95% CI, 1.11-1.36), and moderate/severe TBI raised predicted scores by a factor of 1.71 (P < .001; 95% CI, 1.37-2.12). Probability of PTSD was highest for participants with severe predeployment symptoms, high combat intensity, and deployment-related TBI. Traumatic brain injury doubled or nearly doubled the PTSD rates for participants with less severe predeployment PTSD symptoms.Conclusions and relevanceEven when accounting for predeployment symptoms, prior TBI, and combat intensity, TBI during the most recent deployment is the strongest predictor of postdeployment PTSD symptoms
    corecore