34 research outputs found

    Endogenous Retroviruses Transcriptional Modulation After Severe Infection, Trauma and Burn

    Get PDF
    Although human endogenous retroviruses (HERVs) expression is a growing subject of interest, no study focused before on specific endogenous retroviruses loci activation in severely injured patients. Yet, HERV reactivation is observed in immunity compromised settings like some cancers and auto-immune diseases. Our objective was to assess the transcriptional modulation of HERVs in burn, trauma and septic shock patients. We analyzed HERV transcriptome with microarray data from whole blood samples of a burn cohort (n = 30), a trauma cohort (n = 105) and 2 septic shock cohorts (n = 28, n = 51), and healthy volunteers (HV, n = 60). We described expression of the 337 probesets targeting HERV from U133 plus 2.0 microarray in each dataset and then we compared HERVs transcriptional modulation of patients compared to healthy volunteers. Although all 4 cohorts contained critically ill patients, the majority of the 337 HERVs was not expressed (around 74% in mean). Each cohort had differentially expressed probesets in patients compared to HV (from 19 to 46). Strikingly, 5 HERVs were in common in all types of severely injured patients, with 4 being up-modulated in patients. We highlighted co-expressed profiles between HERV and nearby CD55 and CD300LF genes as well as autonomous HERV expression. We suggest an inflammatory-specific HERV transcriptional response, and importantly, we introduce that the HERVs close to immunity-related genes might have a role on its expression

    Source of Circulating Pentraxin 3 in Septic Shock Patients

    Get PDF
    Sepsis, which is the leading cause of death in intensive care units (ICU), has been acknowledged as a global health priority by the WHO in 2017. Identification of biomarkers allowing early stratification and recognition of patients at higher risk of death is crucial. One promising biomarker candidate is pentraxin-3 (PTX3); initially elevated and persistently increased plasma concentration in septic patients has been associated with increased mortality. PTX3 is an acute phase protein mainly stored in neutrophil granules. These cells are responsible for rapid and prompt release of PTX3 in inflammatory context, but the cellular origin responsible for successive days' elevation in sepsis remains unknown. Upon inflammatory stimulation, PTX3 can also be produced by other cell types, including endothelial and immune cells. As in septic patients immune alterations have been described, we therefore sought to investigate whether such cells participated in the elevation of PTX3 over the first days after septic shock onset. To address this point, PTX3 was measured in plasma from septic shock patients at day 3 after ICU admission as well as in healthy volunteers (HV), and the capacity of whole blood cells to secrete PTX3 after inflammatory stimulation was evaluated ex vivo. A significantly mean higher (100-fold) concentration of plasma PTX3 was found in patients compared to HV, which was likely due to the inflammation-induced initial release of the pre-existing PTX3 reservoir contained in neutrophils. Strikingly, when whole blood was stimulated ex vivo with LPS no significant difference between patients and HV in PTX3 release was found. This was in contrast with TNFα which decreased production was illustrative of the endotoxin tolerance phenomenon occurring in septic patients. Then, the release of PTX3 protein from a HV neutrophil-free PBMC endotoxin tolerance model was investigated. At the transcriptional level, PTX3 seems to be a weakly tolerizable gene similar to TNFα. Conversely, increased protein levels observed in anergy condition reflects a non-tolerizable phenotype, more likely to an anti-inflammatory marker. Hence, altered immune cells still have the ability to produce PTX3 in response to an inflammatory trigger, and therefore circulating white blood cell subset could be responsible of the sustained PTX3 plasma levels over the first days of sepsis setting

    Relationship between molecular pathogen detection and clinical disease in febrile children across Europe:a multicentre, prospective observational study

    Get PDF
    Background: The PERFORM study aimed to understand causes of febrile childhood illness by comparing molecular pathogen detection with current clinical practice. Methods: Febrile children and controls were recruited on presentation to hospital in 9 European countries 2016–2020. Each child was assigned a standardized diagnostic category based on retrospective review of local clinical and microbiological data. Subsequently, centralised molecular tests (CMTs) for 19 respiratory and 27 blood pathogens were performed. Findings: Of 4611 febrile children, 643 (14%) were classified as definite bacterial infection (DB), 491 (11%) as definite viral infection (DV), and 3477 (75%) had uncertain aetiology. 1061 controls without infection were recruited. CMTs detected blood bacteria more frequently in DB than DV cases for N. meningitidis (OR: 3.37, 95% CI: 1.92–5.99), S. pneumoniae (OR: 3.89, 95% CI: 2.07–7.59), Group A streptococcus (OR 2.73, 95% CI 1.13–6.09) and E. coli (OR 2.7, 95% CI 1.02–6.71). Respiratory viruses were more common in febrile children than controls, but only influenza A (OR 0.24, 95% CI 0.11–0.46), influenza B (OR 0.12, 95% CI 0.02–0.37) and RSV (OR 0.16, 95% CI: 0.06–0.36) were less common in DB than DV cases. Of 16 blood viruses, enterovirus (OR 0.43, 95% CI 0.23–0.72) and EBV (OR 0.71, 95% CI 0.56–0.90) were detected less often in DB than DV cases. Combined local diagnostics and CMTs respectively detected blood viruses and respiratory viruses in 360 (56%) and 161 (25%) of DB cases, and virus detection ruled-out bacterial infection poorly, with predictive values of 0.64 and 0.68 respectively. Interpretation: Most febrile children cannot be conclusively defined as having bacterial or viral infection when molecular tests supplement conventional approaches. Viruses are detected in most patients with bacterial infections, and the clinical value of individual pathogen detection in determining treatment is low. New approaches are needed to help determine which febrile children require antibiotics. Funding: EU Horizon 2020 grant 668303.</p

    Relationship between molecular pathogen detection and clinical disease in febrile children across Europe: a multicentre, prospective observational study

    Get PDF
    BackgroundThe PERFORM study aimed to understand causes of febrile childhood illness by comparing molecular pathogen detection with current clinical practice.MethodsFebrile children and controls were recruited on presentation to hospital in 9 European countries 2016-2020. Each child was assigned a standardized diagnostic category based on retrospective review of local clinical and microbiological data. Subsequently, centralised molecular tests (CMTs) for 19 respiratory and 27 blood pathogens were performed.FindingsOf 4611 febrile children, 643 (14%) were classified as definite bacterial infection (DB), 491 (11%) as definite viral infection (DV), and 3477 (75%) had uncertain aetiology. 1061 controls without infection were recruited. CMTs detected blood bacteria more frequently in DB than DV cases for N. meningitidis (OR: 3.37, 95% CI: 1.92-5.99), S. pneumoniae (OR: 3.89, 95% CI: 2.07-7.59), Group A streptococcus (OR 2.73, 95% CI 1.13-6.09) and E. coli (OR 2.7, 95% CI 1.02-6.71). Respiratory viruses were more common in febrile children than controls, but only influenza A (OR 0.24, 95% CI 0.11-0.46), influenza B (OR 0.12, 95% CI 0.02-0.37) and RSV (OR 0.16, 95% CI: 0.06-0.36) were less common in DB than DV cases. Of 16 blood viruses, enterovirus (OR 0.43, 95% CI 0.23-0.72) and EBV (OR 0.71, 95% CI 0.56-0.90) were detected less often in DB than DV cases. Combined local diagnostics and CMTs respectively detected blood viruses and respiratory viruses in 360 (56%) and 161 (25%) of DB cases, and virus detection ruled-out bacterial infection poorly, with predictive values of 0.64 and 0.68 respectively.InterpretationMost febrile children cannot be conclusively defined as having bacterial or viral infection when molecular tests supplement conventional approaches. Viruses are detected in most patients with bacterial infections, and the clinical value of individual pathogen detection in determining treatment is low. New approaches are needed to help determine which febrile children require antibiotics.FundingEU Horizon 2020 grant 668303

    Impact of infection on proteome-wide glycosylation revealed by distinct signatures for bacterial and viral pathogens

    Get PDF
    Mechanisms of infection and pathogenesis have predominantly been studied based on differential gene or protein expression. Less is known about posttranslational modifications, which are essential for protein functional diversity. We applied an innovative glycoproteomics method to study the systemic proteome-wide glycosylation in response to infection. The protein site-specific glycosylation was characterized in plasma derived from well-defined controls and patients. We found 3862 unique features, of which we identified 463 distinct intact glycopeptides, that could be mapped to more than 30 different proteins. Statistical analyses were used to derive a glycopeptide signature that enabled significant differentiation between patients with a bacterial or viral infection. Furthermore, supported by a machine learning algorithm, we demonstrated the ability to identify the causative pathogens based on the distinctive host blood plasma glycopeptide signatures. These results illustrate that glycoproteomics holds enormous potential as an innovative approach to improve the interpretation of relevant biological changes in response to infection

    Genomic investigations of unexplained acute hepatitis in children

    Get PDF
    Since its first identification in Scotland, over 1,000 cases of unexplained paediatric hepatitis in children have been reported worldwide, including 278 cases in the UK1. Here we report an investigation of 38 cases, 66 age-matched immunocompetent controls and 21 immunocompromised comparator participants, using a combination of genomic, transcriptomic, proteomic and immunohistochemical methods. We detected high levels of adeno-associated virus 2 (AAV2) DNA in the liver, blood, plasma or stool from 27 of 28 cases. We found low levels of adenovirus (HAdV) and human herpesvirus 6B (HHV-6B) in 23 of 31 and 16 of 23, respectively, of the cases tested. By contrast, AAV2 was infrequently detected and at low titre in the blood or the liver from control children with HAdV, even when profoundly immunosuppressed. AAV2, HAdV and HHV-6 phylogeny excluded the emergence of novel strains in cases. Histological analyses of explanted livers showed enrichment for T cells and B lineage cells. Proteomic comparison of liver tissue from cases and healthy controls identified increased expression of HLA class 2, immunoglobulin variable regions and complement proteins. HAdV and AAV2 proteins were not detected in the livers. Instead, we identified AAV2 DNA complexes reflecting both HAdV-mediated and HHV-6B-mediated replication. We hypothesize that high levels of abnormal AAV2 replication products aided by HAdV and, in severe cases, HHV-6B may have triggered immune-mediated hepatic disease in genetically and immunologically predisposed children

    Modulation of human endogenous retrovirus expression in inflammatory and immunocompromised contexts

    No full text
    Le sepsis est dĂ©fini par l’apparition de dysfonctions d’organes, multiples et mortelles, causĂ©es par une rĂ©ponse de l’hĂŽte dĂ©rĂ©gulĂ©e suite Ă  une infection. L’hĂ©tĂ©rogĂ©nĂ©itĂ© de la maladie reprĂ©sente un dĂ©fi clinique majeur au regard de la prise en charge thĂ©rapeutique, et Ă  ce jour les marqueurs proposĂ©s ne suffisent pas Ă  stratifier les patients. Les rĂ©trovirus endogĂšnes humains (HERV) pourraient ĂȘtre des marqueurs pertinents,compte tenu des propriĂ©tĂ©s immunosuppressives de leurs enveloppes et de leur expression dans des maladies inflammatoires et auto-immunes. Cette thĂšse a pour objectif de savoir dans quelle mesure les HERV sont exprimĂ©s et modulĂ©s, dans des conditions d’inflammation et d’immunosuppression. Pour cela,nous avons utilisĂ© une puce Ă  ADN haute densitĂ© permettant (i) l’analyse de la transcription de 363 689HERV et 1500 gĂšnes, et (ii) une lecture fonctionnelle de l’activitĂ© des LTR. L’expression des HERV a Ă©tĂ© objectivĂ©e (i) dans un modĂšle ex-vivo de tolĂ©rance Ă  l’endotoxine sur des cellules mononuclĂ©es du sang pĂ©riphĂ©rique (PBMC) d’individus sains et (ii) sur sang total provenant d’individus sains et de patients en choc septique, stratifiĂ©s ou non en fonction du statut immunitaire. (1) De 5,6% Ă  6,9% des HERV sont exprimĂ©s dans le compartiment sanguin et environ 20% des LTR possĂšdent une fonction promotrice ou polyA, les deux fonctions Ă©tant mutuellement exclusives. (2) Le contenu du transcriptome HERV est modulĂ© ex vivo dans le contexte de tolĂ©rance Ă  l’endotoxine laissant apparaitre deux grands phĂ©notypes transcriptionnels. L’expression de certains loci HERV est corrĂ©lĂ©e au statut immunitaire de patient septique.L’évaluation d’une signature molĂ©culaire complexe sur une cohorte de validation, permet la sĂ©paration en deux groupes prĂ©sentant des critĂšres de sĂ©vĂ©ritĂ© distincts, suggĂ©rant les HERV/MaLR comme biomarqueurs de stratification. (3) L’analyse de la co-expression des gĂšnes et des HERV a permis d’intĂ©grer ceux-ci au sein de rĂ©seaux associĂ©es Ă  la rĂ©ponse de l’hĂŽte et de proposer des hypothĂšses fonctionnelles.Sepsis is defined as a life-threatening organ dysfunction caused by a dysregulated host response to infection.The heterogeneity of the disease present a major clinical challenge with regard to the therapeutic coverage,and this day the proposed markers are not enough to stratify patients. The human endogenous retrovirus(HERV) could be relevant markers, considering the immunosuppressives properties of their envelopes andtheir expression in inflammatory and autoimmune disease. The aim of this thesis is to know to what extentthe HERVs are expressed and modulated, in inflammatory and immunocompromised contexts. For this, weused a high density DNA chip allowing (i) the transcription analysis of 363,689 HERV and 1500 genes,and (ii) a functional reading of LTRs activities. The HERVs expression was objectified (i) in endotoxintolerance ex vivo model in peripheral blood mononuclear cells (PBMCs) of healthy volunteers and (ii) inwhole blood of healthy volunteers and septic shock patients, stratified or not according to immunity state.(1) Of 5,6% at 6,9% of HERVs are expressed in the blood compartment and around 20% of LTRs have apromoter or polyA function, both functions being mutually exclusive. (2) The HERV transcriptome ismodulated in ex vivo endotoxin tolerance model letting appear two higher transcriptional phenotypes. Theexpression of some HERVs loci are correlated of the immunity state of the septic shock patients. Theevaluation of molecular signature in validation cohort, allowed to separate in two patients groupspresenting different severity criteria, suggesting HERV/MaLR as biomarkers of stratification. (3) The coexpressedanalysis of genes and HERVs allowed to integrate these within signaling pathways associated atthe host immune response and to provide functional hypothesis

    A comprehensive hybridization model allows whole HERV transcriptome profiling using high density microarray

    No full text
    International audienceBackground: Human endogenous retroviruses (HERVs) have received much attention for their implications in the etiology of many human diseases and their profound effect on evolution. Notably, recent studies have highlighted associations between HERVs expression and cancers (Yu et al., Int J Mol Med 32, 2013), autoimmunity (Balada et al., Int Rev Immunol 29:351-370, 2010) and neurological (Christensen, J Neuroimmune Pharmacol 5:326-335, 2010) conditions. Their repetitive nature makes their study particularly challenging, where expression studies have largely focused on individual loci (De Parseval et al., J Virol 77:10414-10422, 2003) or general trends within families (Forsman et al., J Virol Methods 129:16-30, 2005; Seifarth et al., J Virol 79:341-352, 2005; Pichon et al., Nucleic Acids Res 34:e46, 2006). Methods: To refine our understanding of HERVs activity, we introduce here a new microarray, HERV-V3. This work was made possible by the careful detection and annotation of genomic HERV/MaLR sequences as well as the development of a new hybridization model, allowing the optimization of probe performances and the control of cross-reactions.ï»żï»żï»żResults: HERV-V3 offers an almost complete coverage of HERVs and their ancestors (mammalian apparent LTR-retrotransposons, MaLRs) at the locus level along with four other repertoires (active LINE-1 elements, lncRNA, a selection of 1559 human genes and common infectious viruses). We demonstrate that HERV-V3 analytical performances are comparable with commercial Affymetrix arrays, and that for a selection of tissue/pathological specific loci, the patterns of expression measured on HERV-V3 is consistent with those reported in the literature. Conclusions: Given its large HERVs/MaLRs coverage and additional repertoires, HERV-V3 opens the door to multiple applications such as enhancers and alternative promoters identification, biomarkers identification as well as the characterization of genes and HERVs/MaLRs modulation caused by viral infection
    corecore