99 research outputs found

    The Professional Learning Motivation Profile (PLMP): A Tool for Assessing Instructional Motivation

    Full text link
    This article chronicles the collaboration of administrators from six districts and three college professors as they assessed professional learning during the first year of teaching. The examination led to the development of a Professional Learning Motivation Profile. Results from the profile indicated a traditional model of professional development was not effective in growing the professional learning motivation of beginning teachers. Anecdotal data shared includes how administrators used the data to inform conversations designed to support teachers in their journey toward courageous, effective instruction

    Fast-ignition design transport studies: realistic electron source, integrated PIC-hydrodynamics, imposed magnetic fields

    Full text link
    Transport modeling of idealized, cone-guided fast ignition targets indicates the severe challenge posed by fast-electron source divergence. The hybrid particle-in-cell [PIC] code Zuma is run in tandem with the radiation-hydrodynamics code Hydra to model fast-electron propagation, fuel heating, and thermonuclear burn. The fast electron source is based on a 3D explicit-PIC laser-plasma simulation with the PSC code. This shows a quasi two-temperature energy spectrum, and a divergent angle spectrum (average velocity-space polar angle of 52 degrees). Transport simulations with the PIC-based divergence do not ignite for > 1 MJ of fast-electron energy, for a modest 70 micron standoff distance from fast-electron injection to the dense fuel. However, artificially collimating the source gives an ignition energy of 132 kJ. To mitigate the divergence, we consider imposed axial magnetic fields. Uniform fields ~50 MG are sufficient to recover the artificially collimated ignition energy. Experiments at the Omega laser facility have generated fields of this magnitude by imploding a capsule in seed fields of 50-100 kG. Such imploded fields are however more compressed in the transport region than in the laser absorption region. When fast electrons encounter increasing field strength, magnetic mirroring can reflect a substantial fraction of them and reduce coupling to the fuel. A hollow magnetic pipe, which peaks at a finite radius, is presented as one field configuration which circumvents mirroring.Comment: 16 pages, 17 figures, submitted to Phys. Plasma

    Report from the Integrated Modeling Panel at the Workshop on the Science of Ignition on NIF

    Get PDF
    This section deals with multiphysics radiation hydrodynamics codes used to design and simulate targets in the ignition campaign. These topics encompass all the physical processes they model, and include consideration of any approximations necessary due to finite computer resources. The section focuses on what developments would have the highest impact on reducing uncertainties in modeling most relevant to experimental observations. It considers how the ICF codes should be employed in the ignition campaign. This includes a consideration of how the experiments can be best structured to test the physical models the codes employ

    Cone-Guided Fast Ignition with no Imposed Magnetic Fields

    Full text link
    Simulations of ignition-scale fast ignition targets have been performed with the new integrated Zuma-Hydra PIC-hydrodynamic capability. We consider an idealized spherical DT fuel assembly with a carbon cone, and an artificially-collimated fast electron source. We study the role of E and B fields and the fast electron energy spectrum. For mono-energetic 1.5 MeV fast electrons, without E and B fields, the energy needed for ignition is E_f^{ig} = 30 kJ. This is about 3.5x the minimal deposited ignition energy of 8.7 kJ for our fuel density of 450 g/cm^3. Including E and B fields with the resistive Ohm's law E = \eta J_b gives E_f^{ig} = 20 kJ, while using the full Ohm's law gives E_f^{ig} > 40 kJ. This is due to magnetic self-guiding in the former case, and \nabla n \times \nabla T magnetic fields in the latter. Using a realistic, quasi two-temperature energy spectrum derived from PIC laser-plasma simulations increases E_f^{ig} to (102, 81, 162) kJ for (no E/B, E = \eta J_b, full Ohm's law). This stems from the electrons being too energetic to fully stop in the optimal hot spot depth.Comment: Minor revisions in response to referee comment
    • …
    corecore