2 research outputs found

    Root litter decomposition is suppressed in species mixtures and in the presence of living roots

    No full text
      Plant species diversity and identity can significantly modify litter decomposition, but the underlying mechanisms remain elusive, particularly for root litter. Here, we aimed to disentangle the mechanisms by which plant species diversity alters root litter decomposition. We hypothesised that (1) interactions between species in mixed communities result in litter that decomposes faster than litter produced in monocultures; (2) litter decomposition is accelerated in the presence of living plants, especially when the litter and living plant identities are matched (known as home-field advantage). Monocultures and a mixture of four common grassland species were established to obtain individual litter and a ‘natural’ root litter mixture. An ‘artificial’ mixed litter was created using litter from monocultures, mixed in the same proportions as the species composition in the natural litter mixtures based on qPCR measurements. These six root litter types were incubated in four monocultures, a four-species mixture and an unplanted soil. Root decomposition was strongly affected by root litter identity and the presence, but not diversity, of living roots. Mixed-species litter decomposed slower than expected based on the decomposition of single-species litters. In addition, the presence of living roots suppressed decomposition independent of the match between litter and living plant identities. Decomposition was not significantly different between the ‘natural’ and ‘artificial’ root litter mixtures, indicating that root-root interactions in species mixtures did not affect root chemical quality. Synthesis. Suppressed decomposition in the presence of living roots indicates that interactions between microbial communities associated with living roots and root litter control root litter decomposition. As we found no support for the importance of home-field advantage or interspecific root interactions in modifying decomposition, suppressed decomposition of mixed-species litter seems to be primarily driven by chemical rather than biotic interactions. </ol

    DataSheet_1_Metabarcoding of soil environmental DNA to estimate plant diversity globally.pdf

    No full text
    IntroductionTraditional approaches to collecting large-scale biodiversity data pose huge logistical and technical challenges. We aimed to assess how a comparatively simple method based on sequencing environmental DNA (eDNA) characterises global variation in plant diversity and community composition compared with data derived from traditional plant inventory methods.MethodsWe sequenced a short fragment (P6 loop) of the chloroplast trnL intron from from 325 globally distributed soil samples and compared estimates of diversity and composition with those derived from traditional sources based on empirical (GBIF) or extrapolated plant distribution and diversity data.ResultsLarge-scale plant diversity and community composition patterns revealed by sequencing eDNA were broadly in accordance with those derived from traditional sources. The success of the eDNA taxonomy assignment, and the overlap of taxon lists between eDNA and GBIF, was greatest at moderate to high latitudes of the northern hemisphere. On average, around half (mean: 51.5% SD 17.6) of local GBIF records were represented in eDNA databases at the species level, depending on the geographic region.DiscussioneDNA trnL gene sequencing data accurately represent global patterns in plant diversity and composition and thus can provide a basis for large-scale vegetation studies. Important experimental considerations for plant eDNA studies include using a sampling volume and design to maximise the number of taxa detected and optimising the sequencing depth. However, increasing the coverage of reference sequence databases would yield the most significant improvements in the accuracy of taxonomic assignments made using the P6 loop of the trnL region.</p
    corecore