16 research outputs found

    Adapted Bacteriophages for Treating Urinary Tract Infections

    Get PDF
    Urinary tract infections (UTIs) are among the most widespread microbial diseases and their economic impact on the society is substantial. The continuing increase of antibiotic resistance worldwide is worrying. As a consequence, well-tolerated, highly effective therapeutic alternatives are without delay needed. Although it has been demonstrated that bacteriophage therapy may be effective and safe for treating UTIs, the number of studied patients is low and there is a lack of randomized controlled trials (RCTs). The present study has been designed as a two-phase prospective investigation: (1) bacteriophage adaptation, (2) treatment with the commercially available but adapted Pyo bacteriophage. The aim was to evaluate feasibility, tolerability, safety, and clinical/microbiological outcomes in a case series as a pilot for a double-blind RCT. In the first phase, patients planned for transurethral resection of the prostate were screened (n = 130) for UTIs and enrolled (n = 118) in the study when the titer of predefined uropathogens (Staphylococcus aureus, E. coli, Streptococcus spp., Pseudomonas aeruginosa, Proteus mirabilis) in the urine culture was ≥104 colony forming units/mL. In vitro analysis showed a sensitivity for uropathogenic bacteria to Pyo bacteriophage of 41% (48/118) and adaptation cycles of Pyo bacteriophage enhanced its sensitivity to 75% (88/118). In the second phase, nine patients were treated with adapted Pyo bacteriophage and bacteria titer decreased (between 1 and 5 log) in six of the nine patients (67%). No bacteriophage-associated adverse events have been detected. The findings of our prospective two-phase study suggest that adapted bacteriophage therapy might be effective and safe for treating UTIs. Thus, well-designed RCTs are highly warranted to further define the role of this potentially revolutionizing treatment option

    What Can We Learn from a Metagenomic Analysis of a Georgian Bacteriophage Cocktail?

    Get PDF
    Phage therapy, a practice widespread in Eastern Europe, has untapped potential in the combat against antibiotic-resistant bacterial infections. However, technology transfer to Western medicine is proving challenging. Bioinformatics analysis could help to facilitate this endeavor. In the present study, the Intesti phage cocktail, a key commercial product of the Eliava Institute, Georgia, has been tested on a selection of bacterial strains, sequenced as a metagenomic sample, de novo assembled and analyzed by bioinformatics methods. Furthermore, eight bacterial host strains were infected with the cocktail and the resulting lysates sequenced and compared to the unamplified cocktail. The analysis identified 23 major phage clusters in different abundances in the cocktail, among those clusters related to the ICTV genera T4likevirus, T5likevirus, T7likevirus, Chilikevirus and Twortlikevirus, as well as a cluster that was quite distant to the database sequences and a novel Proteus phage cluster. Examination of the depth of coverage showed the clusters to have different abundances within the cocktail. The cocktail was found to be composed primarily of Myoviridae (35%) and Siphoviridae (32%), with Podoviridae being a minority (15%). No undesirable genes were found

    Molecular detection of OXA carbapenemase genes in multidrug-resistant isolates from Iraq and Georgia

    No full text
    International audienceThe aim of this study was to determine the susceptibility to imipenem (IPM) of isolates from different countries and to characterise the carbapenemase-encoding genes in IPM-resistant isolates. A total of 12 strains collected in Belgium ( = 2), Iraq ( = 8) and Georgia ( = 2) were included in the study. Identification of the isolates was confirmed using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS). Antibiotic susceptibility testing was performed by the disk diffusion method, and Etest was used to determine the IPM minimum inhibitory concentrations (MICs) of resistant isolates. The presence of carbapenemase-encoding genes was investigated by polymerase chain reaction (PCR). All isolates were eventually identified by MALDI-TOF MS with high score values. Among the 12 strains, 6 were found to be resistant to IPM (MICs ≥ 16μg/mL), comprising clinical isolates from wound infections of soldiers who were injured either during the Iraq war in 2007 (5 isolates) or during the Georgian-Russian war in 2008 (1 isolate from Georgia). All isolates contained IS and , but isolates from Iraq contained the gene located on a plasmid whereas the isolate from Georgia contained the gene located on the chromosome. None of the IPM-resistant isolates contain the - or -encoding genes. In conclusion, these results re-emphasise the worldwide dissemination of OXA carbapenemase genes in multidrug-resistant clinical isolates of and, to the best of our knowledge, reports the first IPM-resistant strain isolated from a patient during the Georgian-Russian war with the gene located on the chromosome

    Immobilization of bacteriophage in wound-dressing nanostructure

    Get PDF
    Opportunistic bacteria that cause life-threatening infections are still a central problem associated with a healthcare setting. Bacteriophage capsid immobilization on nanostructured polymers maximizes its tail exposure and looks promising in applications toward skin-infections as alternative to antibiotics standardly used. The main goal of this work was to investigate the covalent immobilization of vB_Pae_Kakheti25 bacteriophage capsid on polycaprolactone (PCL) nanofibers (non-woven textile), as a potential effective antimicrobial, laundry resistant and non-toxic dressing for biomedical use. Surface analyses showed that the immobilization of vB_Pae_Kakheti25 bacteriophage capsid on PCL nanofibres oriented bacteriophage tails to interact with bacteria. Furthermore, antimicrobial assays showed a very effective 6 log bacterial reduction, which was equivalent to 99.9999%, after immediate and 2 hours of contact, even following 25 washing cycles (due to covalent bond). The activity of PCL-vB_Pae_Kakheti25 against P. aeruginosa was immediate and its reduction was complete.info:eu-repo/semantics/publishedVersio

    Bacteriophages for treating urinary tract infections in patients undergoing transurethral resection of the prostate: a randomized, placebo-controlled, double-blind clinical trial

    Full text link
    Abstract Background Urinary tract infections (UTI) are among the most prevalent microbial diseases and their financial burden on society is substantial. The continuing increase of antibiotic resistance worldwide is alarming. Thus, well-tolerated, highly effective therapeutic alternatives are urgently needed. Although there is evidence indicating that bacteriophage therapy may be effective and safe for treating UTIs, the number of investigated patients is low and there is a lack of randomized controlled trials. Methods and design This study is the first randomized, placebo-controlled, double-blind trial investigating bacteriophages in UTI treatment. Patients planned for transurethral resection of the prostate are screened for UTIs and enrolled if in urine culture eligible microorganisms ≥104 colony forming units/mL are found. Patients are randomized in a double-blind fashion to the 3 study treatment arms in a 1:1:1 ratio to receive either: a) bacteriophage (i.e. commercially available Pyo bacteriophage) solution, b) placebo solution, or c) antibiotic treatment according to the antibiotic sensitivity pattern. All treatments are intended for 7 days. No antibiotic prophylaxes will be given to the double-blinded treatment arms a) and b). As common practice, the Pyo bacteriophage cocktail is subjected to periodic adaptation cycles during the study. Urinalysis, urine culture, bladder and pain diary, and IPSS questionnaire will be completed prior to and at the end of treatment (i.e. after 7 days) or at withdrawal/drop out from the study. Patients with persistent UTIs will undergo antibiotic treatment according to antibiotic sensitivity pattern. Discussion Based on the high lytic activity and the potential of resistance optimization by direct adaptation of bacteriophages, and considering the continuing increase of antibiotic resistance worldwide, bacteriophage therapy is a very promising treatment option for UTIs. Thus, our randomized controlled trial investigating bacteriophages for treating UTIs will provide essential insights into this potentially revolutionizing treatment option. Trial registration This study has been registered at clinicaltrials.gov ( www.clinicaltrials.gov/ct2/show/NCT03140085 ). April 27, 2017

    Characterization and Testing the Efficiency of Acinetobacter baumannii Phage vB-GEC_Ab-M-G7 as an Antibacterial Agent

    Get PDF
    Acinetobacter baumannii is a gram-negative, non-motile bacterium that, due to its multidrug resistance, has become a major nosocomial pathogen .The increasing number of multidrug resistant (MDR) strains has renewed interest in phage therapy. The aim of our study was to assess the effectiveness of phage administration in Acinetobacter baumannii wound infections in an animal model to demonstrate phage therapy as non-toxic, safe and alternative antibacterial remedy. Using classical methods for the study of bacteriophage properties, we characterized phage vB-GEC_Ab-M-G7 as a dsDNA myovirus with a 90kb genome size. Important characteristics of vB-GEC_Ab-M-G7include a short latent period and large burst size, wide host range, resistance to chloroform and thermal and pH stability. In a rat wound model, phage application effectively decreased the number of bacteria isolated from the wounds of successfully treated animals. This study highlights the effectiveness of the phage therapy and provides further insight into treating infections caused by MDR strains using phage administration

    Intravesical bacteriophages for treating urinary tract infections in patients undergoing transurethral resection of the prostate: a randomised, placebo-controlled, double-blind clinical trial

    Full text link
    BACKGROUND Urinary tract infections (UTIs) are among the most prevalent microbial diseases and their financial burden on society is substantial. In the context of increasing antibiotic resistance, finding alternative treatments for UTIs is a top priority. We aimed to determine whether intravesical bacteriophage therapy with a commercial bacteriophage cocktail is effective in treating UTI. METHODS We did a randomised, placebo-controlled, clinical trial, at the Alexander Tsulukidze National Centre of Urology, Tbilisi, Georgia. Men older than 18 years of age, who were scheduled for transurethral resection of the prostate (TURP), with complicated UTI or recurrent uncomplicated UTI but no signs of systemic infection, were allocated by block randomisation in a 1:1:1 ratio to receive intravesical Pyo bacteriophage (Pyophage; 20 mL) or intravesical placebo solution (20 mL) in a double-blind manner twice daily for 7 days, or systemically applied antibiotics (according to sensitivities) as an open-label standard-of-care comparator. Urine culture was taken via urinary catheter at the end of treatment (ie, day 7) or at withdrawal from the trial. The primary outcome was microbiological treatment response after 7 days of treatment, measured by urine culture; secondary outcomes included clinical and safety parameters during the treatment period. Analyses were done in a modified intention-to-treat population of patients having received at least one dose of the allocated treatment regimen. This trial is registered with ClinicalTrials.gov, NCT03140085. FINDINGS Between June 2, 2017, and Dec 14, 2018, 474 patients were screened for eligibility and 113 (24%) patients were randomly assigned to treatment (37 to Pyophage, 38 to placebo, and 38 to antibiotic treatment). 97 patients (28 Pyophage, 32 placebo, 37 antibiotics) received at least one dose of their allocated treatment and were included in the primary analysis. Treatment success rates did not differ between groups. Normalisation of urine culture was achieved in five (18%) of 28 patients in the Pyophage group compared with nine (28%) of 32 patients in the placebo group (odds ratio [OR] 1·60 [95% CI 0·45-5·71]; p=0·47) and 13 (35%) of 37 patients in the antibiotic group (2·66 [0·79-8·82]; p=0·11). Adverse events occurred in six (21%) of 28 patients in the Pyophage group compared with 13 (41%) of 32 patients in the placebo group (OR 0·36 [95% CI 0·11-1·17]; p=0·089) and 11 (30%) of 37 patients in the antibiotic group (0·66 [0·21-2·07]; p=0·47). INTERPRETATION Intravesical bacteriophage therapy was non-inferior to standard-of-care antibiotic treatment, but was not superior to placebo bladder irrigation, in terms of efficacy or safety in treating UTIs in patients undergoing TURP. Moreover, the bacteriophage safety profile seems to be favourable. Although bacteriophages are not yet a recognised or approved treatment option for UTIs, this trial provides new insight to optimise the design of further large-scale clinical studies to define the role of bacteriophages in UTI treatment. FUNDING Swiss Continence Foundation, the Swiss National Science Foundation, and the Swiss Agency for Development and Cooperation. TRANSLATIONS For the Georgian and German translations of the abstract see Supplementary Materials section
    corecore