62 research outputs found
Inclusion of triphenylmethane derivatives by crown and linear O-containing molecules: selective interactions and crystal structures
[[abstract]]The sulfamide derivative of triphenylmethanol, 3-[hydroxy(diphenyl)methyl]benzenesulfonamide (H2NSO2Ph)Ph2COH was synthesized and, alongside with the parent triphenylmethanol and triphenylmethylamine, was investigated for selective interactions with crown ethers of different dimensionality (12-18-membered cycles). The molecule of 12-crown-4 (12C4) appeared to be the best candidate for Ph3COH, Ph3CNH2 and Ph3CNH3·NCS, while (H2NSO2Ph)Ph2COH forms the complex exclusively with 18-crown-6 (18C6). The triphenylammonia trifluoroacetate, Ph3CNH3·CF3COO, selectively forms the complex only with 2-methoxyethanol. The crystalline products of the compositions (Ph3COH)2·12C4, (Ph3CNH2)2·12C4, (Ph3CNH3·NCS)2·12C4, [(H2NSO2Ph)Ph2COH]2·18C6 and Ph3CNH3·CF3COO CH3OCH2CH2OH were obtained and studied by X-ray single crystal diffraction.[[journaltype]]國外[[incitationindex]]SCI[[booktype]]紙本[[countrycodes]]GB
2,4-Dithiouracil: the reproducible H-bonded structural motifs in the complexes with 18-membered crown ethers
[[abstract]]2,4-Dithiouracil (DTU) forms in the crystals the H-bonded monohydrates of a 1 : 1 : 1 ratio with 18-crown-6 (18C6) 1, cis,syn,cis-isomer of dicyclohexano-18-crown-6 (DCH6A) 2, and benzo-18-crown-6 (B18C6) 3, while the anhydrous adduct with cis,anti,cis-isomer of dicyclohexano-18-crown-6 (DCH6B) 4 is of a 2 : 1 ratio. In 1–3 the components reproducibly alternate in the chains, while in 4 the chains are built of the alternative centrosymmetric dimers of 2,4-dithiouracil and the molecules of the cis,anti,cis-isomer of dicyclohexano-18-crown-6.[[journaltype]]國外[[incitationindex]]SCI[[booktype]]紙本[[booktype]]電子版[[countrycodes]]GB
Chargeâ Transport Properties of F6TNAPâ Based Chargeâ Transfer Cocrystals
The crystal structures of the chargeâ transfer (CT) cocrystals formed by the Ï â electron acceptor 1,3,4,5,7,8â hexafluoroâ 11,11,12,12â tetracyanonaphthoâ 2,6â quinodimethane (F6TNAP) with the planar Ï â electronâ donor molecules triphenylene (TP), benzo[b]benzo[4,5]thieno[2,3â d]thiophene (BTBT), benzo[1,2â b:4,5â bâ ²]dithiophene (BDT), pyrene (PY), anthracene (ANT), and carbazole (CBZ) have been determined using singleâ crystal Xâ ray diffraction (SCXRD), along with those of two polymorphs of F6TNAP. All six cocrystals exhibit 1:1 donor/acceptor stoichiometry and adopt mixedâ stacking motifs. Cocrystals based on BTBT and CBZ Ï â electron donor molecules exhibit brickwork packing, while the other four CT cocrystals show herringboneâ type crystal packing. Infrared spectroscopy, molecular geometries determined by SCXRD, and electronic structure calculations indicate that the extent of groundâ state CT in each cocrystal is small. Density functional theory calculations predict large conduction bandwidths and, consequently, low effective masses for electrons for all six CT cocrystals, while the TPâ , BDTâ , and PYâ based cocrystals are also predicted to have large valence bandwidths and low effective masses for holes. Chargeâ carrier mobility values are obtained from spaceâ charge limited current (SCLC) measurements and fieldâ effect transistor measurements, with values exceeding 1 cm2 Vâ 1 s1 being estimated from SCLC measurements for BTBT:F6TNAP and CBZ:F6TNAP cocrystals.Structural, electronic band structure, and electrical properties of a series of chargeâ transfer cocrystals based on F6TNAP and six planar donors are presented. Density functional theory calculations afford large conduction bandwidths and low effective masses for all six cocrystals. A few cocrystals exhibit chargeâ carrier mobilities in excess of 1 cm2 Vâ 1 sâ 1, as estimated from spaceâ charge limited current measurements.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/153248/1/adfm201904858-sup-0001-S1.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/153248/2/adfm201904858.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/153248/3/adfm201904858_am.pd
Synthesis, biological evaluation, X-ray molecular structure and molecular docking studies of RGD mimetics containing 6-amino-2,3-dihydroisoindolin-1-one fragment as ligands of integrin αIIbβ3
AbstractA series of novel RGD mimetics containing phthalimidine fragment was designed and synthesized. Their antiaggregative activity determined by Born’s method was shown to be due to inhibition of fibrinogen binding to αIIbβ3. Molecular docking of RGD mimetics to αIIbβ3 receptor showed the key interactions in this complex, and also some correlations have been observed between values of biological activity and docking scores. The single crystal X-ray data were obtained for five mimetics
Molecular complexes of thionicotinamide with 18-membered crown ethers: Synthesis and crystal structures
[[journaltype]]國外[[incitationindex]]SC
Unprecedented Coordination Compounds with 4,4′-Diaminodiphenylethane as a Supramolecular Agent and Ditopic Ligand: Synthesis, Crystal Structures and Hirshfeld Surface Analysis
In this pioneering research, mononuclear coordination complexes and coordination polymers were obtained using the conformationally flexible ditopic ligand 4,4′-diaminodiphenylethane and different metal salts (nitrates, sulfates, tetrafluoroborates and perchlorates). Seven new products, including the mononuclear complexes [Cd(2,2′-bpy)3](ClO4)2](dadpe)(4,4′-bpy) (1), [Ni(dadpe)2(H2O)4](SO4).H2O (2), one-dimensional coordination polymers {[Zn(NO3)(dadpe)(dmf)2](NO3)}n (3), {[Cd(2,2′-bpy)2(dadpe)](ClO4)2}n (4), and two-dimensional coordination polymers, {[Cd(4,4′-bpy)2(H2O)2](ClO4)2(dadpe)(EtOH)2}n (5), {[Co(4,4′-bpy)2(H2O)2](BF4)2(dadpe)(EtOH)2}n (6) and {[Cd(adi)(dadpe)](H2adi)}n (7), (dadpe=4,4′-diaminodiphenylethane, 2,2′-bpy=2,2′-bipyridine, 4,4′-bpy=4,4′-bipyridine, H2adi=adipic acid) were produced. The synthesized compounds were characterized by FTIR and single-crystal X-ray diffraction analyses. The dadpe was recorded as a neutral guest in the crystals of mononuclear complex 1 and in coordination polymers 5 and 6. In compound 2, two dadpe ligands coordinate in a monodentate mode and occupy two trans-positions in the [Ni(H2O)4(dadpe)2]2+ octahedral complex cation. Coordination polymers 3 and 4 represent single chains originating from dadpe as a bidentate linker in both. The H-donor’s possibilities of amino groups were utilized in the interconnection of coordination chains into H-bonded networks via NH(NH2)···O hydrogen bonds. The isostructural coordination polymers 5 and 6 comprise similar cationic square grids [M(4,4′-bpy)2(H2O)2]2+ [M=Cd (5), M=Co (6)], with sql topology balanced by the charge-compensated anions, while dadpe and EtOH as neutral guests are situated in the interlayer space. The neutral 2D coordination network in 7 with the sql topology originates from both adi and dadpe linkers as bidentate-bridging ligands, and the neutral H2adi is entrapped as a guest in crystal lattice. The impact of different types of intermolecular interactions was evaluated by Hirshfeld surface analysis
(μ2-2-Methoxyethanol-κ3O1:O1,O3)(2-methoxyethanol-κO1)tris(μ2-3,4,5,6-tetrafluoro-o-phenylene-κ2C1:C2)trimercury(II)
In the title compound, [Hg3(C6F4)3(C3H8O2)2], two O atoms from one 2-methoxyethanol ligand and one O atom from the second 2-methoxyethanol ligand coordinate three HgII atoms [Hg—O = 2.765 (7)–2.890 (8) Å] in the trimeric organomercurial Lewis acid (o-C6F4Hg)3. The hydroxy groups are involved in formation of intra- and intermolecular O—H...O hydrogen bonds; the latter link two molecules into centrosymmetric dimers. An extensive net of weak intermolecular C—H...F interactions further consolidates the crystal packing
Diaquabis(pyridine-2-carboxylato-κ2N,O)zinc dimethylformamide hemisolvate
In the title compound, [Zn(C6H4NO2)2(H2O)2]·0.5C3H7NO, the ZnII ion is coordinated in a distorted octahedral N2O4 environment by two N,O-chelating pyridine-2-carboxylate ligands and two cis water molecules. The chelating pyridine-2-carboxylate ligands create two five-membered Zn/N/C/C/O rings, which form a dihedral angle of 86.4 (2)°. In the crystal, O—H...O hydrogen bonds link the complex molecules into a two-dimensional network parallel to (100). The dimethylformamide solvent molecule is disordered about a twofold rotation axis
Preparation, Characterization, And Electronic Structure Of Asymmetric Isonaphthalimide: Mechanism Of Dual Fluorescence In Solid State
The asymmetric isonaphthalene imide, 3-[(4-nitrophenyl)imino]-1H,3H- benzo[de]isochromen-1-one was obtained by condensation of 1,8-naphthoylchloride with p-nitroaniline in the presence of pyridine. The crystal structure and vibrational and electronic absorption spectra are reported. The emission spectrum of the crystalline phase demonstrates dual luminescence, with short and long wavelength components, while only the short wavelength component is present in chloroform solution. The geometrical and electronic structures of the ground and excited states of the molecule are investigated using density functional theory methods. Dual fluorescence is explained in terms of the excited states of different nature. The spectroscopic properties of newly synthesized compounds for possible biosensor applications are discussed. © 2013 American Chemical Society
- …