23 research outputs found

    The differential effects of bisphosphonates, SERMS (selective estrogen receptor modulators), and parathyroid hormone on bone remodeling in osteoporosis

    Get PDF
    Osteoporosis is a skeletal metabolic disease characterized by a compromised bone fragility, leading to an increased risk of developing spontaneous and traumatic fractures. Osteoporosis is considered a multifactorial disease and fractures are the results of several different risk factors both extra- and intraskeletal. Thus bone fragility can be the end point of several different causes: a) failure to reach an optimal peak bone mass during growth; b) excessive bone resorption resulting in decreased bone mass and microarchitectural deterioration; c) inadequate formation upon an increased resorption during the process of bone remodeling. The pharmacological therapeutical options, available to date, are directed on prevention of fractures. The aim of this paper is to describe the activities and the mechanisms of action, as known at present, of the most used therapies for osteoporosis and their clinical implications. Improvement of knowledge in this field will allow us to further improve therapeutical choices and pharmacological interventions

    Management of glucocorticoids-induced osteoporosis: role of teriparatide

    Get PDF
    Glucocorticoids (GC)-induced osteoporosis (GIOP) is the most common cause of secondary osteoporosis, which leads to an increased fracture risk in patients. The normal bone turnover depends on a balance between osteoblasts and osteoclasts activity and GC can cause a rapid bone loss, decreasing bone formation and increasing bone resorption. The decreased bone formation is mainly due to the GC-induced apoptosis of both osteoblasts and osteocytes, while the increased bone resorption is due to the increased life-span of pre-existing osteoclasts. Bisphosphonates are clearly effective in preventing and treating GIOP but anabolic therapeutic strategies are the new promising therapeutic alternative. Experimental and clinical studies indicate that teriparatide, the active (1–34) parathyroid hormone (PTH) molecule, is efficacious for the treatment of GIOP, being able to induce an increase in bone mass in these patients. Intermittent administration of human PTH (1–34) stimulates bone formation by increasing osteoblast number. Additionally, human PTH (1–34) modulates the level and/or activity of locally produced growth factors and cytokines. Teriparatide has been demonstrated in several clinical studies to significantly decrease the incidence of fractures in patients affected by GIOP. It has recently received an indication for GIOP and its label indication has also been expanded

    Ghrelin induces proliferation in human aortic endothelial cells via ERK1/2 and PI3K/Akt activation

    Get PDF
    The direct ghrelin (Ghr) involvement in cardiovascular (CV) system homeostasis has been suggested by the expression of its receptor in CV tissues and by evidence that ghrelin mediates CV activities in animals and in humans. Moreover, low Ghr plasma levels have been reported in pathological conditions characterized by high cardiovascular risk. In the present study, we investigated Ghr effect on proliferation of human aortic endothelial cell (HAEC) and involved transduction pathways. Our results indicate that ghrelin elicited proliferation in a dose-dependent manner (EC(50) about of 5 nmol/L) in cultured HAEC, and that this effect was inhibited by the receptor antagonist (D-Lys3)-GHRP-6. Western blot experiments documented an activation of external receptor activated kinases (ERK1/2) and Akt in a dose-dependent fashion, as well as involvement of the cAMP pathway in ERK1/2 phosphorylation. Experiments conducted with appropriate pharmacological inhibitors to investigate Ghr-induced HAEC proliferation confirmed the involvement of ERK1/2 and 13P/Akt pathways, as well as the role of AMP cyclase/PKA pathway in ERK1/2 phosphorylation. Our results indicate that Ghr promotes HAEC proliferation, and thus may be a protective factor against vascular damage. The low ghrelin serum levels reported in insulin-resistant states may not be able to effectively counteract endothelial cell injury. (C) 2008 Elsevier Inc. All rights reserved

    Osteoblast-conditioned medium promotes proliferation and sensitizes breast cancer cells to imatinib treatment

    Get PDF
    Inhibition of platelet-derived growth factor receptor (PDGFR) signaling restricts the growth of human breast cancer in the bone of nude mice. We hypothesized that osteoblast-secreted substances may alter the response capacity of breast cancer cells to the PDGFRs tyrosine kinase inhibitor imatinib mesylate. We found that osteoblast-conditioned medium (OCM) increases the proliferation rate of the estrogen receptor negative (ER−) MDA-MB-231 and of the ER+ MCF-7 human breast cancer cell lines and the growth-promoting effect on ER+ cells is independent from estrogen. OCM significantly improved the dose- and the time-dependent sensitivity of the tumor cells to the anti-proliferative effect of imatinib. We also found that MDA-MB-231 and MCF-7 cells express the two PDGFRs subtypes, PDGFR-α and PDGFR-β, and OCM treatment increases the expression of the PDGFRs. Furthermore, imatinib inhibited the phosphorylation rate of its target tyrosine kinase receptors. We conclude that bone microenvironment, through osteoblast-secreted substances may cause estrogen-independent proliferation of breast cancer cells by a mechanism mediated by the induction of PDGFRs expression. The enhanced sensitivity of OCM-treated breast cancer cells to imatinib would justify investigation on the efficacy of imatinib in bone breast cancer metastasis

    Ghrelin inhibits contraction and proliferation of human aortic smooth muscle cells by cAMP/PKA pathway activation

    No full text
    Ghrelin (Ghr), the natural ligand of growth hormone secretagogue receptor, is principally produced by the stomach. An interesting aspect in Ghr cardiovascular effects was elicited by the identification of ghrelin and GHS (growth hormone secretagogue) receptor mRNA expression in several cardiovascular tissues and cell types. In man, Ghr administration induced lowering of blood pressure, and decreased plasma levels were reported in several pathological conditions. The present investigation was performed to elucidate ghrelin effect on contraction and proliferation of human aortic smooth muscle cells (HASMC). Ghrelin receptor expression in HASMC was evaluated by RT-PCR, and binding studies were performed to elucidate the receptor kinetics. Ghr effect on angiotensin II-induced HASMC contraction and proliferation was evaluated in vitro. In addition, involvement of cAMP, ERK, and Akt pathways was investigated. PCR documented GHS-Rla expression. Binding of [(125)I-His(9)]-Ghrelin to HASMC was saturable in a dose-dependent manner. Scatchard analysis showed a single class of binding sites (Kd 1.58 +/- 0.23 nM, B(max) 5848 +/- 291 fmol/10(5) cells). In competition binding, (D-Lys(3))-GHRP-6 showed a capacity to compete with [(125)I-His(9)]-Ghrelin with Ki of 4.25 nM. Ghrelin was able to inhibit angiotensin II-induced proliferation and contraction in a dose-response fashion via the cAMP/PKA pathway. Our data document that Ghr affects several HASMC functions, opening the way to consider ghrelin as a possible therapeutic target in many pathological conditions associated with vascular damage and remodelling. (C) 2008 Elsevier Ireland Ltd. All rights reserved

    Analysis of human alveolar osteoblast behavior on a nano-hydroxyapatite substrate: an in vitro study.

    No full text
    Background: Nano-hydroxyapatite (nHA) is a potential ideal biomaterial for bone regeneration. However, studies have yet to characterize the behavior of human osteoblasts derived from alveolar bone on nHA. Thus, the aim of the present study was to evaluate the influence of nHA on the adhesion, proliferation and differentiation of these alveolar bone-derived cells. Methods: Primary human alveolar osteoblasts were collected from the alveolar ridge of a male periodontal patient during osseous resective surgery and grown on culture plates coated with either polylysine or polylysine with nano-hydroxyapatite (POL/nHA) composite. The cells were grown and observed for 14 days, and then assessed for potential modifications to osteoblasts homeostasis as evaluated by quantitative reverse transcriptase-polymerase chain reaction (real time RT-PCR), scanning electron microscopy and atomic force microscopy. Results: Real time PCR revealed a significant increase in the expression of the selected markers of osteoblast differentiation (bone morphogenetic protein (BMP)-2,-5,-7, ALP, COLL-1A2, OC, ON) in cells grown on the POL/nHA substrate. In addition, as compared with the POL surface, cells grown on the POL/nHA substrate demonstrated better osteoconductive properties, as demonstrated by the increase in adhesion and spreading, likely as a result of the increased surface roughness of the composite. Conclusions: The increased expression of BMPs and osteoinductive biomarkers suggest that nano-hydroxyapatite may stimulate the proliferation and differentiation of local alveolar osteoblasts and thus encourage bone regeneration at sites of alveolar bone regeneration

    Is obesity protective for osteoporosis? Evaluation of bone mineral density in individuals with high body mass index

    No full text
    Background: Obese individuals often present comorbidities while they appear protected against the development of osteoporosis. However, few and contradictory data are now available on skeletal modifications in obese patients. The aim of this study was to characterise bone mineral density (BMD) in overweight (BMI > 25 30) patients. Methods: We selected 398 patients ( 291 women, 107 men, age 44.1 + 14.2 years, BMI 35.8 + 5.9 kg/m(2)) who underwent clinical examination, blood tests and examination of body composition. Subjects with chronic conditions or taking medications interfering with bone metabolism, hormonal and nutritional status and recent weight loss were excluded. Results: Interestingly, 37% (n = 146) of this population showed a significantly lower than expected lumbar BMD: 33% (n = 98) of women showed a T-score -1.84 +/- 0.71, and 45% (n = 48) of men showed a T-score -1.88 +/- 0.64. When the population was divided into subgroups based on different BMI, it was noted that overweight ( BMI > 25 30) was associated with a low bone mass, compatible with a diagnosis of osteoporosis. No differences were observed in hormones and lipid profiles among subgroups. Conclusions: Our results indicate that a subpopulation of obese patients has a significant low lumbar BMD than expected for age. Thus, a careful characterisation of skeletal metabolism might be useful in all obese individuals to avoid fragility fractures later in life
    corecore