26 research outputs found

    vitro and ex vivo testing of tenofovir shows it is effective as an HIV-1 microbicide

    Get PDF
    Abstract Background: Tenofovir gel has entered into clinical trials for use as a topical microbicide to prevent HIV-1 infection but has no published data regarding pre-clinical testing using in vitro and ex vivo models. To validate our findings with on-going clinical trial results, we evaluated topical tenofovir gel for safety and efficacy. We also modeled systemic application of tenofovir for efficacy

    Is wetter better? An evaluation of over-the-counter personal lubricants for safety and anti-HIV-1 activity.

    Get PDF
    Because lubricants may decrease trauma during coitus, it is hypothesized that they could aid in the prevention of HIV acquisition. Therefore, safety and anti-HIV-1 activity of over-the-counter (OTC) aqueous- (n = 10), lipid- (n = 2), and silicone-based (n = 2) products were tested. The rheological properties of the lipid-based lubricants precluded testing with the exception of explant safety testing. Six aqueous-based gels were hyperosmolar, two were nearly iso-osmolar, and two were hypo-osmolar. Evaluation of the panel of products showed Gynol II (a spermicidal gel containing 2% nonoxynol-9), KY Jelly, and Replens were toxic to Lactobacillus. Two nearly iso-osmolar aqueous- and both silicone-based gels were not toxic toward epithelial cell lines or ectocervical or colorectal explant tissues. Hyperosmolar lubricants demonstrated reduction of tissue viability and epithelial fracture/sloughing while the nearly iso-osmolar and silicon-based lubricants showed no significant changes in tissue viability or epithelial modifications. While most of the lubricants had no measurable anti-HIV-1 activity, three lubricants which retained cell viability did demonstrate modest anti-HIV-1 activity in vitro. To determine if this would result in protection of mucosal tissue or conversely determine if the epithelial damage associated with the hyperosmolar lubricants increased HIV-1 infection ex vivo, ectocervical tissue was exposed to selected lubricants and then challenged with HIV-1. None of the lubricants that had a moderate to high therapeutic index protected the mucosal tissue. These results show hyperosmolar lubricant gels were associated with cellular toxicity and epithelial damage while showing no anti-viral activity. The two iso-osmolar lubricants, Good Clean Love and PRÉ, and both silicone-based lubricants, Female Condom 2 lubricant and Wet Platinum, were the safest in our testing algorithm

    Is wetter better? An evaluation of over-the-counter personal lubricants for safety and anti-HIV-1 activity.

    No full text
    Because lubricants may decrease trauma during coitus, it is hypothesized that they could aid in the prevention of HIV acquisition. Therefore, safety and anti-HIV-1 activity of over-the-counter (OTC) aqueous- (n = 10), lipid- (n = 2), and silicone-based (n = 2) products were tested. The rheological properties of the lipid-based lubricants precluded testing with the exception of explant safety testing. Six aqueous-based gels were hyperosmolar, two were nearly iso-osmolar, and two were hypo-osmolar. Evaluation of the panel of products showed Gynol II (a spermicidal gel containing 2% nonoxynol-9), KY Jelly, and Replens were toxic to Lactobacillus. Two nearly iso-osmolar aqueous- and both silicone-based gels were not toxic toward epithelial cell lines or ectocervical or colorectal explant tissues. Hyperosmolar lubricants demonstrated reduction of tissue viability and epithelial fracture/sloughing while the nearly iso-osmolar and silicon-based lubricants showed no significant changes in tissue viability or epithelial modifications. While most of the lubricants had no measurable anti-HIV-1 activity, three lubricants which retained cell viability did demonstrate modest anti-HIV-1 activity in vitro. To determine if this would result in protection of mucosal tissue or conversely determine if the epithelial damage associated with the hyperosmolar lubricants increased HIV-1 infection ex vivo, ectocervical tissue was exposed to selected lubricants and then challenged with HIV-1. None of the lubricants that had a moderate to high therapeutic index protected the mucosal tissue. These results show hyperosmolar lubricant gels were associated with cellular toxicity and epithelial damage while showing no anti-viral activity. The two iso-osmolar lubricants, Good Clean Love and PRÉ, and both silicone-based lubricants, Female Condom 2 lubricant and Wet Platinum, were the safest in our testing algorithm

    Impact of the over-the-counter lubricants on colorectal (CR) and ectocervical (CVX) tissue viability and architecture.

    No full text
    <p><i>Ex vivo</i> tissue was placed in transwell supports with the luminal surface exposed to the air. The edges were sealed to ensure the lubricant was exposed to the luminal epithelium in duplicate cultures. After an overnight exposure, tissue was washed with one piece further cultured in medium containing 1-(4,5-dimethylthiazol-2-yl)-3,5-diphenylformazan for the MTT assay (A) or the other piece fixed in paraformaldehyde for hematoxylin and eosin staining of CR tissue (B) and CVX tissue (C). The MTT assay represents the mean ± standard deviation of a minimum of 5 independent tissues. The histology is representative of one of those tissues.</p

    Impact of the over-the-counter lubricants on <i>Lactobacillus species</i> viability.

    No full text
    <p><i>Lactobacillus</i> species (<i>L. crispatus</i> (open bar); <i>L. jensenii</i> 25258 (diagonal line bar); <i>L. jensenii</i> 28Ab (diamond hatch bar)) were cultured in the presence of lubricants for 30 min then plated. The reduction of colony forming units was compared to control cultures. The data are presented as the Log<sub>10</sub> growth compared to the control cultures.</p

    Effect of the over-the-counter silicone-based lubricants on epithelial cell line monolayer integrity.

    No full text
    <p>(A) Female Condom 2 lubricant (FC2) or (B) Wet Platinum were evaluated for their impact on Caco-2 and HEC-1-A epithelial cell line monolayers. Lubricant was directly applied to the apical surface of the monolayers for 60 min and then medium containing fluorescent microbeads was applied. Baselateral supernatant was collected over a 24 h period and the fluorescence was measured. The data presented are the %Transmission and represents the mean ± standard deviation of 5 independent experiments.</p
    corecore