58 research outputs found

    Oscillation dynamics underlie functional switching of NF-κB for B-cell activation.

    Get PDF
    Transcription factor nuclear factor kappa B (NF-κB) shows cooperative switch-like activation followed by prolonged oscillatory nuclear translocation in response to extracellular stimuli. These dynamics are important for activation of the NF-κB transcriptional machinery, however, NF-κB activity regulated by coordinated actions of these dynamics has not been elucidated at the system level. Using a variety of B cells with artificially rewired NF-κB signaling networks, we show that oscillations and switch-like activation of NF-κB can be dissected and that, under some conditions, these two behaviors are separated upon antigen receptor activation. Comprehensive quantitative experiments and mathematical analysis showed that the functional role of switch activation in the NF-κB system is to overcome transient IKK (IκB kinase) activity to amplify nuclear translocation of NF-κB, thereby inducing the prolonged NF-κB oscillatory behavior necessary for target gene expression and B-cell activation

    中国語の直示移動動詞の研究 : 文法化した“来”、“去”の意味と統語的特徴

    Get PDF
    学位の種別: 課程博士審査委員会委員 : (主査)東京大学教授 楊 凱栄, 東京大学教授 大堀 壽夫, 東京大学准教授 吉川 雅之, 東京大学准教授 小野 秀樹, 追手門学院大学教授 木村 英樹University of Tokyo(東京大学

    Effective impairment of myeloma cells and their progenitors by hyperthermia

    Get PDF
    Multiple myeloma (MM) remains incurable, and MM-initiating cells or MM progenitors are considered to contribute to disease relapse through their drug-resistant nature. In order to improve the therapeutic efficacy for MM, we recently developed novel superparamagnetic nanoparticles which selectively accumulate in MM tumors and extirpate them by heat generated with magnetic resonance. We here aimed to clarify the therapeutic effects on MM cells and their progenitors by hyperthermia. Heat treatment at 43°C time-dependently induced MM cell death. The treatment upregulated endoplasmic reticulum (ER) stress mediators, ATF4 and CHOP, while reducing the protein levels of Pim-2, IRF4, c-Myc and Mcl-1. Combination with the proteasome inhibitor bortezomib further enhanced ER stress to potentiate MM cell death. The Pim inhibitor SMI-16a also enhanced the reduction of the Pim-2-driven survival factors, IRF4 and c-Myc, in combination with the heat treatment. The heat treatment almost completely eradicated “side population” fractions in RPMI8226 and KMS-11 cells and suppressed their clonogenic capacity as determined by in vitro colony formation and tumorigenic capacity in SCID mice. These results collectively demonstrated that hyperthermia is able to impair clonogenic drug-resistant fractions of MM cells and enhance their susceptibility to chemotherapeutic drugs

    Characteristics of Low Body Temperature in Secondary School Boys

    No full text
    corecore