81 research outputs found

    Mutual Interaction of Basophils and T Cells in Chronic Inflammatory Diseases

    Get PDF
    Basophils are, together with mast cells, typical innate effector cells of allergen-induced IgE-dependent allergic diseases. Both cell types express the high affinity receptor for IgE (FcΔR1), release histamine, inflammatory mediators and cytokines following FcΔR1 cross-linking. Basophils are rare granulocytes in blood, lymphoid and non-lymphoid tissues and the difficulties to detect and isolate these cells has hampered the study of their biology and the understanding of their possible role in pathology. Furthermore, the existence of other FcΔR1-expressing cells, including professional Ag-presenting dendritic cells, generated some controversy regarding the ability of basophils to express MHC Class II molecules, present Ag and drive naïve T cell differentiation into Th2 cells. The focus of this review is to present the recent advances on the interactions between basophils and peripheral blood and tissue memory Th1, Th2 and Th17 cells, as well as their potential role in IgE-independent non allergic chronic inflammatory disorders, including human inflammatory bowel diseases. Basophils interactions with the innate players of IgE-dependent allergic inflammation, particularly innate lymphoid cells, will also be considered. The previously unrecognized function for basophils in skewing adaptive immune responses opens novel perspectives for the understanding of their contribution to the pathogenesis of inflammatory diseases

    Thrombospondin 1 Is an Autocrine Negative Regulator of Human Dendritic Cell Activation

    Get PDF
    Thrombospondin 1 (TSP) elicits potent antiinflammatory activities in vivo, as evidenced by persistent, multiorgan inflammation in TSP null mice. Herein, we report that DCs represent an abundant source of TSP at steady state and during activation. Human monocyte-derived immature dendritic cells (iDCs) spontaneously produce TSP, which is strongly enhanced by PGE2 and to a lesser extent by transforming growth factor (TGF) ÎČ, two soluble mediators secreted by macrophages after engulfment of damaged tissues. Shortly after activation via danger signals, DCs transiently produce interleukin (IL) 12 and tumor necrosis factor (TNF) α, thereby eliciting protective and inflammatory immune responses. Microbial stimuli increase TSP production, which is further enhanced by IL-10 or TGF-ÎČ. The endogenous TSP produced during early DC activation negatively regulates IL-12, TNF-α, and IL-10 release through its interactions with CD47 and CD36. After prolonged activation, DCs extinguish their cytokine synthesis and become refractory to subsequent stimulation, thereby favoring the return to steady state. Such “exhausted” DCs continue to release TSP but not IL-10. Disrupting TSP–CD47 interactions during their restimulation restores their cytokine production. We conclude that DC-derived TSP serves as a previously unappreciated negative regulator contributing to arrest of cytokine production, further supporting its fundamental role in vivo in the active resolution of inflammation and maintenance of steady state

    Thymic stromal lymphopoietin is released by human epithelial cells in response to microbes, trauma, or inflammation and potently activates mast cells

    Get PDF
    Compelling evidence suggests that the epithelial cell–derived cytokine thymic stromal lymphopoietin (TSLP) may initiate asthma or atopic dermatitis through a dendritic cell–mediated T helper (Th)2 response. Here, we describe how TSLP might initiate and aggravate allergic inflammation in the absence of T lymphocytes and immunoglobulin E antibodies via the innate immune system. We show that TSLP, synergistically with interleukin 1 and tumor necrosis factor, stimulates the production of high levels of Th2 cytokines by human mast cells (MCs). We next report that TSLP is released by primary epithelial cells in response to certain microbial products, physical injury, or inflammatory cytokines. Direct epithelial cell–mediated, TSLP-dependent activation of MCs may play a central role in “intrinsic” forms of atopic diseases and explain the aggravating role of infection and scratching in these diseases

    Differential Pathogenic Th17 Profile in Mesenteric Lymph Nodes of Crohn's Disease and Ulcerative Colitis Patients

    Get PDF
    The drug targets IL23 and IL12 regulate pathogenicity and plasticity of intestinal Th17 cells in Crohn's disease (CD) and ulcerative colitis (UC), the two most common inflammatory bowel diseases (IBD). However, studies examining Th17 dysregulation in mesenteric lymph nodes (mLNs) of these patients are rare. We showed that in mLNs, CD could be distinguished from UC by increased frequencies of CCR6+CXCR3−RORγ+Tbet−CD4+ (Th17) memory T cells enriched in CD62Llow effector memory T cells (TEM), and their differentially expressed molecular profile. Th17 TEM cells (expressing IL17A, IL17F, RORC, and STAT3) displayed a higher pathogenic/cytotoxic (IL23R, IL18RAP, and GZMB, CD160, PRF1) gene signature in CD relative to UC, while non-pathogenic/regulatory genes (IL9, FOXP3, CTLA4) were more elevated in UC. In both CD and UC, IL12 but not IL23, augmented IFNγ expression in Th17 TEM and switched their molecular profile toward an ex-Th17 (Th1*)-biased transcriptomic signature (increased IFNG, and decreased TCF7, IL17A), suggesting that Th17 plasticity occurs in mLNs before their recruitment to inflamed colon. We propose that differences observed between Th17 cell frequencies and their molecular profile in CD and UC might have implications in understanding disease pathogenesis, and thus, therapeutic management of patients with IBD

    A role for CD47 in the development of experimental colitis mediated by SIRPα+CD103− dendritic cells

    Get PDF
    Mesenteric lymph node (mLN) CD103 (αE integrin)+ dendritic cells (DCs) induce regulatory T cells and gut tolerance. However, the function of intestinal CD103− DCs remains to be clarified. CD47 is the ligand of signal regulatory protein α (SIRPα) and promotes SIRPα+ myeloid cell migration. We first show that mucosal CD103− DCs selectively express SIRPα and that their frequency was augmented in the lamina propria and mLNs of mice that developed Th17-biased colitis in response to trinitrobenzene sulfonic acid. In contrast, the percentage of SIRPα+CD103− DCs and Th17 responses were decreased in CD47-deficient (CD47 knockout [KO]) mice, which remained protected from colitis. We next demonstrate that transferring wild-type (WT), but not CD47 KO, SIRPα+CD103− DCs in CD47 KO mice elicited severe Th17-associated wasting disease. CD47 expression was required on the SIRPα+CD103− DCs for efficient trafficking to mLNs in vivo, whereas it was dispensable on both DCs and T cells for Th17 polarization in vitro. Finally, administration of a CD47-Fc molecule resulted in reduced SIRPα+CD103− DC–mediated Th17 responses and the protection of WT mice from colitis. We thus propose SIRPα+CD103− DCs as a pathogenic DC subset that drives Th17-biased responses and colitis, and the CD47–SIRPα axis as a potential therapeutic target for inflammatory bowel disease
    • 

    corecore