4 research outputs found

    The influence of bone substitute material on mechanical properties of trabecular bone in augmentation of intra-articular impression fractures. Experimental study

    Get PDF
    The purpose was to evaluate the effect of bone substitute materials on mechanical properties of trabecular bone adjacent to the joint. Material and methods A total of 21 female chinchilla rabbits weighing 3-3.5 kg was used for the experimental study. A bilateral impression fracture was simulated in the medial tibial condyle and surgically augmented with one of the bone substitution materials: beta-tricalcium phosphate, xenoplastic material and carbon nanostructures. The animals were sacrificed at 6, 12 and 24 weeks postsurgery. Uniaxial compression test was performed to determine mechanical properties of the tibial fragments. Bone microstructure was evaluated with scanning electron microscopy. Statistical data analysis was performed with nonparametric tests. Results Beta-tricalcium phosphate augmentation of the bone interface led to slow resorption accompanied by formation of adequate high-grade bone tissue with mechanical properties gradually increasing with greater observation time that indicated to the bone substitute integrated well with the host bone of the impression bone defect. Xenoplastic augmentation resulted in rapid resorption accompanied by formation of immature bone with mechanical properties declining at 6 to 12 weeks of observation. Carbon nanostructure augmentation of the bone interface caused perifocal bone resorption and absence of osteointegration with mechanical properties declining at 12 to 25 weeks of observation

    Preparation, Characterization, and Biological Evaluation of Poly(Glutamic Acid)-b-Polyphenylalanine Polymersomes

    No full text
    Different types of amphiphilic macromolecular structures have been developed within recent decades to prepare the polymer particles considered as drug delivery systems. In the present research the series of amphiphilic block-copolymers containing poly(glutamatic acid) as hydrophilic, and polyphenylalanine as hydrophobic blocks was synthesized and characterized. Molecular weights for homo- and copolymers were determined by gel-permeation chromatography (GPC) and amino acid analysis, respectively. The copolymers obtained were applied for preparation of polymer particles. The specific morphology of prepared polymerosomes was proved using transmission electron microscopy (TEM). The influence on particle size of polymer concentration and pH used for self-assembly, as well as on the length of hydrophobic and hydrophilic blocks of applied copolymers, was studied by dynamic light scattering (DLS). Depending on different experimental conditions, the formation of nanoparticles with sizes from 60 to 350 nm was observed. The surface of polymersomes was modified with model protein (enzyme). No loss in biocatalytic activity was detected. Additionally, the process of encapsulation of model dyes was developed and the possibility of intracellular delivery of the dye-loaded nanoparticles was proved. Thus, the nanoparticles discussed can be considered for the creation of modern drug delivery systems
    corecore