7 research outputs found

    Commensal Gut Flora Reduces Susceptibility to Experimentally Induced Colitis Via T-cell-derived Interleukin-10

    No full text
    International audienceRegulatory cytokines are well known to modify experimental colitis in mice. The aim of this study was to elucidate the effect of interleukin (IL)-10 derived from different cellular sources and the effect of commensal gut flora in dextran sulfate sodium (DSS)-induced colitis in mice. METHODS: Wildtype (WT) and IL-10 deficient (IL-10(-/-) ) mice either harboring a characterized specific pathogen-free (SPF) gut flora or germfree were exposed to 2% DSS. Moreover, cell type-specific IL-10, IL-4, and IL-12 knockout mice and animals combining the T-cell-specific IL-10 knockout with a deficiency in IL-12 or IL-4 were exposed to DSS. RESULTS: SPF IL-10(-/-) mice showed an increased susceptibility to DSS-induced colitis compared to WT mice determined by histopathology and proinflammatory cytokine and chemokine responses. Under germfree conditions, both WT and IL-10(-/-) mice were highly susceptible to DSS. IL-10 mRNA was increased upon DSS exposure in WT SPF but not in germfree mice. Mice carrying a specific deletion of IL-10 in T-cells exhibited a tendency towards an enhanced susceptibility to DSS. The lack of T-cell-derived IL-10 in combination with the lack of IL-4 increased the susceptibility to DSS colitis, as did the lack of IL-12 alone. CONCLUSIONS: IL-10 is a crucial factor inhibiting the innate proinflammatory immune response induced by DSS. Intestinal bacteria are necessary for the induction of protective IL-10, which is mainly T-cell-derived. T-cell-derived IL-10 can only mediate its protective effect in a Th1-dominated milieu. If the balance is shifted towards a Th2 response, IL-10 is not protective

    Monoclonal antibodies toward different Tn-amino acid backbones display distinct recognition patterns on human cancer cells. Implications for effective immuno-targeting of cancer.

    No full text
    International audienceThe Tn antigen (GalNAcα-O-Ser/Thr) is a well-established tumor-associated marker which represents a good target for the design of anti-tumor vaccines. Several studies have established that the binding of some anti-Tn antibodies could be affected by the density of Tn determinant or/and by the amino acid residues neighboring O-glycosylation sites. In the present study, using synthetic Tn-based vaccines, we have generated a panel of anti-Tn monoclonal antibodies. Analysis of their binding to various synthetic glycopeptides, modifying the amino acid carrier of the GalNAc(*) (Ser* vs Thr*), showed subtle differences in their fine specificities. We found that the recognition of these glycopeptides by some of these MAbs was strongly affected by the Tn backbone, such as a S*S*S* specific MAb (15G9) which failed to recognize a S*T*T* or a T*T*T* structure. Different binding patterns of these antibodies were also observed in FACS and Western blot analysis using three human cancer cell lines (MCF-7, LS174T and Jurkat). Importantly, an immunohistochemical analysis of human tumors (72 breast cancer and 44 colon cancer) showed the existence of different recognition profiles among the five antibodies evaluated, demonstrating that the aglyconic part of the Tn structure (Ser vs Thr) plays a key role in the anti-Tn specificity for breast and colon cancer detection. This new structural feature of the Tn antigen could be of important clinical value, notably due to the increasing interest of this antigen in anticancer vaccine design as well as for the development of anti-Tn antibodies for in vivo diagnostic and therapeutic strategies

    MUC5B silencing reduces chemo-resistance of MCF-7 breast tumor cells and impairs maturation of dendritic cells.

    No full text
    International audienceMucins participate in cancer progression by regulating cell growth, adhesion, signaling, apoptosis or chemo-resistance to drugs. The secreted mucin MUC5B, the major component of the respiratory tract mucus, is aberrantly expressed in breast cancer, where it could constitute a cancer biomarker. In this study we evaluated the role of MUC5B in breast cancer by gene silencing the MUC5B expression with short hairpin RNA on MCF-7 cells. We found that MUC5B-silenced MCF-7 cells have a reduced capacity to grow, adhere and form cell colonies. Interestingly, MUC5B knock-down increased the sensitivity to death induced by chemotherapeutic drugs. We also show that MUC5B silencing impaired LPS-maturation of DCs, and production of cytokines. Furthermore, MUC5B knock-down also influenced DC-differentiation and activation since it resulted in an upregulation of IL-1β, IL-6 and IL-10, cytokines that might be involved in cancer progression. Thus, MUC5B could enhance the production of LPS-induced cytokines, suggesting that the use of MUC5B-based cancer vaccines combined with DC-maturation stimuli, could favor the induction of an antitumor immune response

    Trypanosoma cruzi extracts elicit protective immune response against chemically induced colon and mammary cancers

    Get PDF
    Trypanosoma cruzi, the protozoan parasite that causes Chagas' disease, has anticancer effects mediated, at least in part, by parasite-derived products which inhibit growth of tumor cells. We investigated whether immunity to T. cruzi antigens could induce antitumor activity, using two rat models which reproduce human carcinogenesis: colon cancer induced by 1,2-dimethylhydrazine (DMH), and mammary cancer induced by N-nitroso-N-methylurea (NMU). We found that vaccination with T. cruzi epimastigote lysates strongly inhibits tumor development in both animal models. Rats immunized with T. cruzi antigens induce activation of both CD4(+) and CD8(+) T cells and splenocytes from these animals showed higher cytotoxic responses against tumors as compared to rats receiving adjuvant alone. Tumor-associated immune responses included increasing number of CD11b/c(+) His48(-) MHC II(+) cells corresponding to macrophages and/or dendritic cells, which exhibited augmented NADPH-oxidase activity. We also found that T. cruzi lysate vaccination developed antibodies specific for colon and mammary rat cancer cells, which were capable of mediating antibody-dependent cellular cytotoxicity (ADCC) in vitro. Anti-T. cruzi antibodies cross-reacted with human colon and breast cancer cell lines and recognized 41/60 (68%) colon cancer and 38/63 (60%) breast cancer samples in a series of 123 human tumors. Our results suggest that T. cruzi antigens can evoke an integrated antitumor response involving both the cellular and humoral components of the immune response and provide novel insights into the understanding of the intricate relationship between parasite infection and tumor growthFil: Ubillos, Lluis. Universidad de la República; UruguayFil: Freire, Teresa. Universidad de la República; UruguayFil: Berriel, Edgardo. Instituto Pasteur de Montevideo; Uruguay. Universidad de la República; UruguayFil: Chiribao, María Laura. Universidad de la República; Uruguay. Instituto Pasteur de Montevideo; UruguayFil: Chiale, Carolina. Universidad de la República; UruguayFil: Festari, María Florencia. Universidad de la República; Uruguay. Instituto Pasteur de Montevideo; UruguayFil: Medeiros, Andrea. Universidad de la República; Uruguay. Instituto Pasteur de Montevideo; UruguayFil: Mazal, Daniel. Universidad de la República; UruguayFil: Rondan, Mariella. Universidad de la República; UruguayFil: Bollati Fogolin, Mariela. Instituto Pasteur de Montevideo; UruguayFil: Rabinovich, Gabriel Adrián. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Robello, Carlos. Universidad de la República; Uruguay. Instituto Pasteur de Montevideo; UruguayFil: Osinaga, Eduardo. Universidad de la República; Uruguay. Instituto Pasteur de Montevideo; Urugua
    corecore