5 research outputs found

    Function of SSA Subfamily of Hsp70 Within and Across Species Varies Widely in Complementing Saccharomyces cerevisiae Cell Growth and Prion Propagation

    Get PDF
    BACKGROUND:The cytosol of most eukaryotic cells contains multiple highly conserved Hsp70 orthologs that differ mainly by their spatio-temporal expression patterns. Hsp70s play essential roles in protein folding, transport or degradation, and are major players of cellular quality control processes. However, while several reports suggest that specialized functions of Hsp70 orthologs were selected through evolution, few studies addressed systematically this issue. METHODOLOGY/PRINCIPAL FINDINGS:We compared the ability of Ssa1p-Ssa4p from Saccharomyces cerevisiae and Ssa5p-Ssa8p from the evolutionary distant yeast Yarrowia lipolytica to perform Hsp70-dependent tasks when expressed as the sole Hsp70 for S. cerevisiae in vivo. We show that Hsp70 isoforms (i) supported yeast viability yet with markedly different growth rates, (ii) influenced the propagation and stability of the [PSI(+)] and [URE3] prions, but iii) did not significantly affect the proteasomal degradation rate of CFTR. Additionally, we show that individual Hsp70 orthologs did not induce the formation of different prion strains, but rather influenced the aggregation properties of Sup35 in vivo. Finally, we show that [URE3] curing by the overexpression of Ydj1p is Hsp70-isoform dependent. CONCLUSION/SIGNIFICANCE:Despite very high homology and overlapping functions, the different Hsp70 orthologs have evolved to possess distinct activities that are required to cope with different types of substrates or stress situations. Yeast prions provide a very sensitive model to uncover this functional specialization and to explore the intricate network of chaperone/co-chaperone/substrates interactions

    Control of Lipid Accumulation in the Yeast Yarrowia lipolyticaâ–¿

    No full text
    A genomic comparison of Yarrowia lipolytica and Saccharomyces cerevisiae indicates that the metabolism of Y. lipolytica is oriented toward the glycerol pathway. To redirect carbon flux toward lipid synthesis, the GUT2 gene, which codes for the glycerol-3-phosphate dehydrogenase isomer, was deleted in Y. lipolytica in this study. This Δgut2 mutant strain demonstrated a threefold increase in lipid accumulation compared to the wild-type strain. However, mobilization of lipid reserves occurred after the exit from the exponential phase due to β-oxidation. Y. lipolytica contains six acyl-coenzyme A oxidases (Aox), encoded by the POX1 to POX6 genes, that catalyze the limiting step of peroxisomal β-oxidation. Additional deletion of the POX1 to POX6 genes in the Δgut2 strain led to a fourfold increase in lipid content. The lipid composition of all of the strains tested demonstrated high proportions of FFA. The size and number of the lipid bodies in these strains were shown to be dependent on the lipid composition and accumulation ratio

    Involvement of Acyl Coenzyme A Oxidase Isozymes in Biotransformation of Methyl Ricinoleate into γ-Decalactone by Yarrowia lipolytica

    No full text
    We reported previously on the function of acyl coenzyme A (acyl-CoA) oxidase isozymes in the yeast Yarrowia lipolytica by investigating strains disrupted in one or several acyl-CoA oxidase-encoding genes (POX1 through POX5) (H. Wang et al., J. Bacteriol. 181:5140–5148, 1999). Here, these mutants were studied for lactone production. Monodisrupted strains produced similar levels of lactone as the wild-type strain (50 mg/liter) except for Δpox3, which produced 220 mg of γ-decalactone per liter after 24 h. The Δpox2 Δpox3 double-disrupted strain, although slightly affected in growth, produced about 150 mg of lactone per liter, indicating that Aox2p was not essential for the biotransformation. The Δpox2 Δpox3 Δpox5 triple-disrupted strain produced and consumed lactone very slowly. On the contrary, the Δpox2 Δpox3 Δpox4 Δpox5 multidisrupted strain did not grow or biotransform methyl ricinoleate into γ-decalactone, demonstrating that Aox4p is essential for the biotransformation
    corecore