2 research outputs found

    New 2-in-1 Polyelectrolyte Step-by-Step Film Buildup without Solution Alternation: From PEDOT-PSS to Polyelectrolyte Complexes

    No full text
    Although never emphasized and increasingly used in organic electronics, PEDOT-PSS (poly­(3,4-ethylenedioxythiophene)-poly­(styrene sulfonate)) layer-by-layer (lbl) film construction violates the alternation of polyanion and polycation rule stated as a prerequisit for a step-by-step film buildup. To demonstrate that this alternation is not always necessary, we studied the step-by-step construction of films using a single solution containing polycation/polyanion complexes. We investigated four different systems: PEDOT-PSS, bPEI-PSS (branched poly­(ethylene imine)-poly­(sodium 4-styrene sulfonate)), PDADMA-PSS (poly­(diallyl dimethyl ammonium)-PSS), and PAH-PSS (poly­(allylamine hydrochloride)-PSS). The film buildup obtained by spin-coating or dipping-and-drying process was monitored by ellipsometry, UV–vis-NIR spectrophotometry, and quartz-crystal microbalance. The surface morphology of the films was characterized by atomic force microscopy in tapping mode. After an initial transient regime, the different films have a linear buildup with the number of deposition steps. It appears that, when the particles composed of polyanion-polycation complex and complex aggregates in solution are more or less liquid (case of PEDOT-PSS and bPEI-PSS), our method leads to smooth films (roughness on the order of 1–2 nm). On the other hand, when these complexes are more or less solid particles (case of PDADMA-PSS and PAH-PSS), the resulting films are much rougher (typically 10 nm). Polycation/polyanion molar ratios in monomer unit of the liquid, rinsing, and drying steps are key parameters governing the film buildup process with an optimal polycation/polyanion molar ratio leading to the fastest film growth. This new and general lbl method, designated as <i>2-in-1 method</i>, allows obtaining regular and controlled film buildup with a single liquid containing polyelectrolyte complexes and opens a new route for surface functionalization with polyelectrolytes

    Biomimetic Cryptic Site Surfaces for Reversible Chemo- and Cyto-Mechanoresponsive Substrates

    No full text
    Chemo-mechanotransduction, the way by which mechanical forces are transformed into chemical signals, plays a fundamental role in many biological processes. The first step of mechanotransduction often relies on exposure, under stretching, of cryptic sites buried in adhesion proteins. Likewise, here we report the first example of synthetic surfaces allowing for specific and fully reversible adhesion of proteins or cells promoted by mechanical action. Silicone sheets are first plasma treated and then functionalized by grafting sequentially under stretching poly(ethylene glycol) (PEG) chains and biotin or arginine-glycine-aspartic acid (RGD) peptides. At unstretched position, these ligands are not accessible for their receptors. Under a mechanical deformation, the surface becomes specifically interactive to streptavidin, biotin antibodies, or adherent for cells, the interactions both for proteins and cells being fully reversible by stretching/unstretching, revealing a reversible exposure process of the ligands. By varying the degree of stretching, the amount of interacting proteins can be varied continuously
    corecore