3 research outputs found

    DataSheet_1_Increasing vineyard sustainability: innovating a targeted chitosan-derived biocontrol solution to induce grapevine resistance against downy and powdery mildews.pdf

    No full text
    The European Green Deal aims to reduce the pesticide use, notably by developing biocontrol products to protect crops from diseases. Indeed, the use of significant amounts of chemicals negatively impact the environment such as soil microbial biodiversity or groundwater quality, and human health. Grapevine (Vitis vinifera) was selected as one of the first targeted crop due to its economic importance and its dependence on fungicides to control the main damaging diseases worldwide: grey mold, downy and powdery mildews. Chitosan, a biopolymer extracted from crustacean exoskeletons, has been used as a biocontrol agent in many plant species, including grapevine, against a variety of cryptogamic diseases such as downy mildew (Plasmopara viticola), powdery mildew (Erysiphe necator) and grey mold (Botrytis cinerea). However, the precise molecular mechanisms underlying its mode of action remain unclear: is it a direct biopesticide effect or an indirect elicitation activity, or both? In this study, we investigated six chitosans with diverse degrees of polymerization (DP) ranging from low to high DP (12, 25, 33, 44, 100, and 470). We scrutinized their biological activities by evaluating both their antifungal properties and their abilities to induce grapevine immune responses. To investigate their elicitor activity, we analyzed their ability to induce MAPKs phosphorylation, the activation of defense genes and metabolite changes in grapevine. Our results indicate that the chitosans with a low DP are more effective in inducing grapevine defenses and possess the strongest biopesticide effect against B. cinerea and P. viticola. We identified chitosan with DP12 as the most efficient resistance inducer. Then, chitosan DP12 has been tested against downy and powdery mildews in the vineyard trials performed during the last three years. Results obtained indicated that a chitosan-based biocontrol product could be sufficiently efficient when the amount of pathogen inoculum is quite low and could be combined with only two fungicide treatments during whole season programs to obtain a good protection efficiency. On the whole, a chitosan-based biocontrol product could become an interesting alternative to meet the chemicals reduction targeted in sustainable viticulture.</p

    Table_1_A Plant Extract Acts Both as a Resistance Inducer and an Oomycide Against Grapevine Downy Mildew.DOCX

    No full text
    <p>Protecting vineyards from cryptogamic diseases such as downy mildew, caused by Plasmopara viticola, generally requires a massive use of phytochemicals. However, the issues on unintentional secondary effects on environment and human health, and the occurrence of P. viticola resistant strains, are leading to the development of alternative strategies, such as the use of biocontrol products. In this paper, we evidenced the ability of a plant extract to protect grapevine from P. viticola. Further experiments carried out both on cell suspensions and on plants revealed that plant extract activates typical defense-related responses such as the production of H<sub>2</sub>O<sub>2</sub>, the up-regulation of genes encoding pathogenesis-related proteins and stilbene synthase, as well as the accumulation of resveratrol or its derivative piceid. We also brought to light a strong direct effect of PE on the release and motility of P. viticola zoospores. Furthermore, we found out that PE application left dried residues on leaf surface, impairing zoospores to reach stomata. Altogether, our results highlight the different modes of action of a new biocontrol product able to protect grapevine against downy mildew.</p

    Image_1_A Plant Extract Acts Both as a Resistance Inducer and an Oomycide Against Grapevine Downy Mildew.TIF

    No full text
    <p>Protecting vineyards from cryptogamic diseases such as downy mildew, caused by Plasmopara viticola, generally requires a massive use of phytochemicals. However, the issues on unintentional secondary effects on environment and human health, and the occurrence of P. viticola resistant strains, are leading to the development of alternative strategies, such as the use of biocontrol products. In this paper, we evidenced the ability of a plant extract to protect grapevine from P. viticola. Further experiments carried out both on cell suspensions and on plants revealed that plant extract activates typical defense-related responses such as the production of H<sub>2</sub>O<sub>2</sub>, the up-regulation of genes encoding pathogenesis-related proteins and stilbene synthase, as well as the accumulation of resveratrol or its derivative piceid. We also brought to light a strong direct effect of PE on the release and motility of P. viticola zoospores. Furthermore, we found out that PE application left dried residues on leaf surface, impairing zoospores to reach stomata. Altogether, our results highlight the different modes of action of a new biocontrol product able to protect grapevine against downy mildew.</p
    corecore