6,764 research outputs found
Temperature dependence of exciton recombination in semiconducting single-wall carbon nanotubes
We study the excitonic recombination dynamics in an ensemble of (9,4)
semiconducting single-wall carbon nanotubes by high sensitivity time-resolved
photo-luminescence experiments. Measurements from cryogenic to room temperature
allow us to identify two main contributions to the recombination dynamics. The
initial fast decay is temperature independent and is attributed to the presence
of small residual bundles that create external non-radiative relaxation
channels. The slow component shows a strong temperature dependence and is
dominated by non-radiative processes down to 40 K. We propose a quantitative
phenomenological modeling of the variations of the integrated photoluminescence
intensity over the whole temperature range. We show that the luminescence
properties of carbon nanotubes at room temperature are not affected by the
dark/bright excitonic state coupling
Exciton fine structure and spin decoherence in monolayers of transition metal dichalcogenides
We study the neutral exciton energy spectrum fine structure and its spin
dephasing in transition metal dichalcogenides such as MoS. The interaction
of the mechanical exciton with its macroscopic longitudinal electric field is
taken into account. The splitting between the longitudinal and transverse
excitons is calculated by means of the both electrodynamical approach and
perturbation theory. This long-range exciton
exchange interaction can induce valley polarization decay. The estimated
exciton spin dephasing time is in the picosecond range, in agreement with
available experimental data.Comment: 5 pages, 3 figure
Giant spin-dependent photo-conductivity in GaAsN dilute nitride semiconductor
A theoretical and experimental study of the spin-dependent photoconductivity
in dilute Nitride GaAsN is presented. The non linear transport model we develop
here is based on the rate equations for electrons, holes, deep paramagnetic and
non paramagnetic centers both under CW and pulsed optical excitation. Emphasis
is given to the effect of the competition between paramagnetic centers and non
paramagnetic centers which allows us to reproduce the measured characteristics
of the spin-dependent recombination power dependence. Particular attention is
paid to the role of an external magnetic field in Voigt geometry. The
photoconductivity exhibits a Hanle-type curve whereas the spin polarization of
electrons shows two superimposed Lorentzian curves with different widths,
respectively related to the recombination of free and trapped electrons. The
model is capable of reproducing qualitatively and quantitatively the most
important features of photoluminescence and photocurrent experiments and is
helpful in providing insight on the various mechanisms involved in the electron
spin polarization and filtering in GaAsN semiconductors.Comment: 10 pages, 5 figure
Measurement of heavy-hole spin dephasing in (InGa)As quantum dots
We measure the spin dephasing of holes localized in self-assembled (InGa)As
quantum dots by spin noise spectroscopy. The localized holes show a distinct
hyperfine interaction with the nuclear spin bath despite the p-type symmetry of
the valence band states. The experiments reveal a short spin relaxation time
{\tau}_{fast}^{hh} of 27 ns and a second, long spin relaxation time
{\tau}_{slow}^{hh} which exceeds the latter by more than one order of
magnitude. The two times are attributed to heavy hole spins aligned
perpendicular and parallel to the stochastic nuclear magnetic field. Intensity
dependent measurements and numerical simulations reveal that the long
relaxation time is still obscured by light absorption, despite low laser
intensity and large detuning. Off-resonant light absorption causes a
suppression of the spin noise signal due to the creation of a second hole
entailing a vanishing hole spin polarization.Comment: accepted to be published in AP
Exciton Valley Dynamics probed by Kerr Rotation in WSe2 Monolayers
We have experimentally studied the pump-probe Kerr rotation dynamics in
WSe monolayers. This yields a direct measurement of the exciton valley
depolarization time . At T=4K, we find ps, a fast
relaxation time resulting from the strong electron-hole Coulomb exchange
interaction in bright excitons. The exciton valley depolarization time
decreases significantly when the lattice temperature increases with
being as short as 1.5ps at 125K. The temperature dependence is well explained
by the developed theory taking into account the exchange interaction and a fast
exciton scattering time on short-range potentials.Comment: 5 pages, 3 figure
Carrier and polarization dynamics in monolayer MoS2
In monolayer MoS2 optical transitions across the direct bandgap are governed
by chiral selection rules, allowing optical valley initialization. In time
resolved photoluminescence (PL) experiments we find that both the polarization
and emission dynamics do not change from 4K to 300K within our time resolution.
We measure a high polarization and show that under pulsed excitation the
emission polarization significantly decreases with increasing laser power. We
find a fast exciton emission decay time on the order of 4ps. The absence of a
clear PL polarization decay within our time resolution suggests that the
initially injected polarization dominates the steady state PL polarization. The
observed decrease of the initial polarization with increasing pump photon
energy hints at a possible ultrafast intervalley relaxation beyond the
experimental ps time resolution. By compensating the temperature induced change
in bandgap energy with the excitation laser energy an emission polarization of
40% is recovered at 300K, close to the maximum emission polarization for this
sample at 4K.Comment: 7 pages, 7 figures including supplementary materia
Splitting between Bright and Dark excitons in Transition Metal Dichalcogenide Monolayers
The optical properties of transition metal dichalcogenide monolayers such as
the two-dimensional semiconductors MoS and WSe are dominated by
excitons, Coulomb bound electron-hole pairs. The light emission yield depends
on whether the electron-hole transitions are optically allowed (bright) or
forbidden (dark). By solving the Bethe Salpeter Equation on top of wave
functions in density functional theory calculations, we determine the sign and
amplitude of the splitting between bright and dark exciton states. We evaluate
the influence of the spin-orbit coupling on the optical spectra and clearly
demonstrate the strong impact of the intra-valley Coulomb exchange term on the
dark-bright exciton fine structure splitting.Comment: 6 pages, 2 figure
- …
