1 research outputs found

    A Gravitational Theory of the Quantum

    Full text link
    The synthesis of quantum and gravitational physics is sought through a finite, realistic, locally causal theory where gravity plays a vital role not only during decoherent measurement but also during non-decoherent unitary evolution. Invariant set theory is built on geometric properties of a compact fractal-like subset IUI_U of cosmological state space on which the universe is assumed to evolve and from which the laws of physics are assumed to derive. Consistent with the primacy of IUI_U, a non-Euclidean (and hence non-classical) state-space metric gpg_p is defined, related to the pp-adic metric of number theory where pp is a large but finite Pythagorean prime. Uncertain states on IUI_U are described using complex Hilbert states, but only if their squared amplitudes are rational and corresponding complex phase angles are rational multiples of 2Ο€2 \pi. Such Hilbert states are necessarily gpg_p-distant from states with either irrational squared amplitudes or irrational phase angles. The gappy fractal nature of IUI_U accounts for quantum complementarity and is characterised numerically by a generic number-theoretic incommensurateness between rational angles and rational cosines of angles. The Bell inequality, whose violation would be inconsistent with local realism, is shown to be gpg_p-distant from all forms of the inequality that are violated in any finite-precision experiment. The delayed-choice paradox is resolved through the computational irreducibility of IUI_U. The Schr\"odinger and Dirac equations describe evolution on IUI_U in the singular limit at p=∞p=\infty. By contrast, an extension of the Einstein field equations on IUI_U is proposed which reduces smoothly to general relativity as pβ†’βˆžp \rightarrow \infty. Novel proposals for the dark universe and the elimination of classical space-time singularities are given and experimental implications outlined
    corecore