16 research outputs found

    Plasma Methionine and Clinical Severity in Nitrous Oxide Consumption

    No full text
    In the last few years, there has been an increase in the recreational use of nitrous oxide (N2O), which can lead to neurological symptoms such as sensory or motor disorders. The literature links these symptoms to a functional inactivation of vitamin B12 by oxidation of its cobalt ion, which prevents the vitamin B12 from acting as a cofactor for methionine synthase. Thus, demyelination related to methionine deficiency could be responsible for the neurological disorders associated with N2O consumption, including the combined sclerosis of the spinal cord. We aimed to study the correlation between the plasma methionine levels and clinical severity observed in N2O users. We retrospectively collected clinical and biological data from 93 patients who chronically consumed N2O. The patients were divided into four groups based of the severity of their clinical symptoms (based on their Peripheral Neuropathy Disability (PND) score). The plasma amino acids measurement, including methionine, were performed systematically by liquid chromatography coupled with mass spectrometry. Plasma methionine is significantly correlated with the clinical severity (Spearman coefficient: −0.42; p-value −5), however, the average methionine level in the four groups is within the physiological values (N: 16–23 µmol/L). There is a significant inverse correlation between plasma methionine and homocysteine (Spearman coefficient: −0.57; p-value −9), which confirms the action of nitrous oxide on the methionine synthase. A decrease in plasma methionine cannot be imputed as the only mechanism involved in the pathophysiology of the neurological disorders in nitrous oxide consumption. In addition, there are few therapeutic indications for the use of methionine. Thus, we should be careful concerning the potential use of methionine in nitrous oxide consumption. As a consequence, other pathophysiological mechanisms probably need to be identified in order to find potential therapeutic targets

    Virulent Shigella flexneri Affects Secretion, Expression, and Glycosylation of Gel-Forming Mucins in Mucus-Producing Cells

    No full text
    Mucin glycoproteins are secreted in large amounts by the intestinal epithelium and constitute an efficient component of innate immune defenses to promote homeostasis and protect against enteric pathogens. In this study, our objective was to investigate how the bacterial enteropathogen Shigella flexneri, which causes bacillary dysentery, copes with the mucin defense barrier. We report that upon in vitro infection of mucin-producing polarized human intestinal epithelial cells, virulent S. flexneri manipulates the secretion of gel-forming mucins. This phenomenon, which is triggered only by virulent strains, results in accumulation of mucins at the cell apical surface, leading to the appearance of a gel-like structure that favors access of bacteria to the cell surface and the subsequent invasion process. We identify MUC5AC, a gel-forming mucin, as a component of this structure. Formation of this gel does not depend on modifications of electrolyte concentrations, induction of trefoil factor expression, endoplasmic reticulum stress, or response to unfolded proteins. In addition, transcriptional and biochemical analyses of infected cells reveal modulations of mucin gene expression and modifications of mucin glycosylation patterns, both of which are induced by virulent bacteria in a type III secretion system-dependent manner. Thus, S. flexneri has developed a dedicated strategy to alter the mucus barrier by targeting key elements of the gel-forming capacity of mucins: gene transcription, protein glycosylation, and secretion

    Functional assessment of creatine transporter in control and X-linked SLC6A8-deficient fibroblasts

    No full text
    International audienceCreatine transporter is currently the focus of renewed interest with emerging roles in brain neurotransmission and physiology, and the bioenergetics of cancer metastases. We here report on amendments of a standard creatine uptake assay which might help clinical chemistry laboratories to extend their current range of measurements of creatine and metabolites in body fluids to functional enzyme explorations. In this respect, short incubation times and the use of a stable-isotope-labeled substrate (D-3-creatine) preceded by a creatine wash-out step from cultured fibroblast cells by removal of fetal bovine serum (rich in creatine) from the incubation medium are recommended. Together, these measures decreased, by a first order of magnitude, creatine concentrations in the incubation medium at the start of creatine-uptake studies and allowed to functionally discriminate between 4 hemizygous male and 4 heterozygous female patients with X-linked SLC6A8 deficiency, and between this cohort of eight patients and controls. The functional assay corroborated genetic diagnosis of SLC6A8 deficiency. Gene anomalies in our small cohort included splicing site (c.912G \textgreater A [p.Ile260_Gln304del], c.778-2A \textgreater G and c.1495 + 2 T \textgreater G), substitution (c.407C \textgreater T) [p.Ala136Val] and deletion (c.635\₆36delAG [p.Glu212Valfs*84] and c.1324delC [p.Gln442Lysfs*21]) variants with reduced creatine transporter function validating their pathogenicity, including that of a previously unreported c.1324delC variant. The present assay adaptations provide an easy, reliable and discriminative manner for exploring creatine transporter activity and disease variations. It might apply to drug testing or other evaluations in the genetic and metabolic horizons covered by the emerging functions of creatine and its transporter, in a way, however, requiring and completed by additional studies on female patients and blood-brain barrier permeability properties of selected compounds. As a whole, the proposed assay of creatine transporter positively adds to currently existing measurements of this transporter activity, and determining on a large scale the extent of its exact suitability to detect female patients should condition in the future its transfer in clinical practice

    Antioxidants other than vitamin c may be detected by glucose meters: immediate relevance for patients with disorders targeted by antioxidant therapies

    No full text
    International audienceOwing to their ease of use, glucose meters are frequently used in research and medicine. However, little is known of whether other non-glucose molecules, besides vitamin C, interfere with glucometry. Therefore, we sought to determine whether other antioxidants might behave like vitamin C in causing falsely elevated blood glucose levels, potentially exposing patients to glycemic mismanagement by being administered harmful doses of glucose-lowering drugs. To determine whether various antioxidants can be detected by seven commercial glucose meters, human blood samples were spiked with various antioxidants ex vivo and their effect on the glucose results were assessed by Parkes error grid analysis. Several of the glucose meters demonstrated a positive bias in the glucose measurement of blood samples spiked with vitamin C, N-acetylcysteine, and glutathione. With the most interference-sensitive glucose meter, non-blood solutions of 1 mmol/L N-acetylcysteine, glutathione, cysteine, vitamin C, dihydrolipoate, and dithiothreitol mimicked the results seen on that glucose meter for 0.7, 1.0, 1.2, 2.6, 3.7 and 5.5 mmol/L glucose solutions, respectively. Glucose meter users should be alerted that some of these devices might produce spurious glucose results not only in patients on vitamin C therapy but also in those being administered other antioxidants. As discussed herein, the clinical relevance of the data is immediate in view of the current use of antioxidant therapies for disorders such as the metabolic syndrome, diabetes, cardiovascular diseases, and coronavirus disease 2019

    Plasma BCAA changes in Patients with NAFLD are Sex Dependent 1

    No full text
    International audienceContext: Plasma branched chain amino acid (BCAA) concentrations correlate positively with body mass index (BMI), measures of insulin resistance (IR), and severity of nonalcoholic fatty liver disease (NAFLD). Moreover, plasma BCAA concentrations also differ between the sexes, which display different susceptibilities to cardio-metabolic diseases.Objective: Assess whether plasma BCAA concentrations associate with NAFLD severity independently of BMI, IR, and sex.Patients: Patients visiting the obesity clinic of the Antwerp University Hospital were consecutively recruited from 2006 to 2014.Design and setting: A cross-sectional study cohort of 112 obese patients (59 women and 53 men) was divided into 4 groups according to NAFLD severity. Groups were matched for sex, age, BMI, homeostatic model assessment of IR, and hemoglobin A1c.Main outcome measures: Fasting plasma BCAA concentrations were measured by tandem mass spectrometry using the aTRAQâ„¢ method.Results: In the study cohort, a modest positive correlation was observed between plasma BCAA concentrations and NAFLD severity, as well as a strong effect of sex on plasma BCAA levels. Subgroup analysis by sex revealed that while plasma BCAA concentrations increased with severity of NAFLD in women, they tended to decrease in men. Additionally, only women displayed significantly increased plasma BCAAs with increasing fibrosis.Conclusion: Plasma BCAA concentrations display sex-dimorphic changes with increasing severity of NAFLD, independently of BMI, IR, and age. Additionally, plasma BCAA are associated with significant fibrosis in women, but not in men. These results highlight the importance of a careful consideration of sex as a major confounding factor in cross-sectional studies of NAFLD

    First-line Screening of OXPHOS Deficiencies Using Microscale Oxygraphy in Human Skin Fibroblasts: A Preliminary Study

    No full text
    International audienceThe diagnosis of mitochondrial diseases is a real challenge because of the vast clinical and genetic heterogeneity. Classically, the clinical examination and genetic analysis must be completed by several biochemical assays to confirm the diagnosis of mitochondrial disease. Here, we tested the validity of microscale XF technology in measuring oxygen consumption in human skin fibroblasts isolated from 5 pediatric patients with heterogeneous mitochondrial disorders. We first set up the protocol conditions to allow the determination of respiratory parameters including respiration associated with ATP production, proton leak, maximal respiration, and spare respiratory capacity with reproducibility and repeatability. Maximum respiration and spare capacity were the only parameters decreased in patients irrespective of the type of OXPHOS deficiency. These results were confirmed by high-resolution oxygraphy, the reference method to measure cellular respiration. Given the fact that microscale XF technology allows fast, automated and standardized measurements, we propose to use microscale oxygraphy among the first-line methods to screen OXPHOS deficiencies
    corecore