8 research outputs found

    Boundary Value Problem for an Oblique Paraxial Model of Light Propagation

    Get PDF
    We study the Schr\"odinger equation which comes from the paraxial approximation of the Helmholtz equation in the case where the direction of propagation is tilted with respect to the boundary of the domain. This model has been proposed in (Doumic, Golse, Sentis, CRAS, 2003). Our primary interest here is in the boundary conditions successively in a half-plane, then in a quadrant of R2. The half-plane problem has been used in (Doumic, Duboc, Golse, Sentis, JCP, to appear) to build a numerical method, which has been introduced in the HERA plateform of CEA

    Numerical Solution of an Inverse Problem in Size-Structured Population Dynamics

    Get PDF
    We consider a size-structured model for cell division and address the question of determining the division (birth) rate from the measured stable size distribution of the population. We propose a new regularization technique based on a filtering approach. We prove convergence of the algorithm and validate the theoretical results by implementing numerical simulations, based on classical techniques. We compare the results for direct and inverse problems, for the filtering method and for the quasi-reversibility method proposed in [Perthame-Zubelli]

    Eigenelements of a General Aggregation-Fragmentation Model

    Get PDF
    We consider a linear integro-differential equation which arises to describe both aggregation-fragmentation processes and cell division. We prove the existence of a solution (\lb,\U,\phi) to the related eigenproblem. Such eigenelements are useful to study the long time asymptotic behaviour of solutions as well as the steady states when the equation is coupled with an ODE. Our study concerns a non-constant transport term that can vanish at x=0,x=0, since it seems to be relevant to describe some biological processes like proteins aggregation. Non lower-bounded transport terms bring difficulties to find a prioria\ priori estimates. All the work of this paper is to solve this problem using weighted-norms

    Label Structured Cell Proliferation Models.

    Get PDF
    International audienceWe present a general class of cell population models that can be used to track the proliferation of cells which have been labeled with a fluorescent dye. The mathematical models employ fluorescence intensity as a structure variable to describe the evolution in time of the population density of proliferating cells. While cell division is a major component of changes in cellular fluorescence intensity, models developed here also address overall label degradation

    Stability Analysis of a Simplified Yet Complete Model for Chronic Myelegenous Leukemia

    No full text
    We analyze the asymptotic behavior of a partial differential equation (PDE) model for hematopoiesis. This PDE model is derived from the original agent-based model formulated by Roeder et al. in [35], and it describes the progression of blood cell development from the stem cell to the terminally differentiated state. To conduct our analysis, we start with the PDE model of [20], which coincides very well with the simulation results obtained by Roeder et al. We simplify the PDE model to make it amenable to analysis and justify our approximations using numerical simulations. An analysis of the simplified PDE model proves to exhibit very similar properties to those of the original agent-based model, even if for slightly different parameters. Hence, the simplified model is of value in understanding the dynamics of hematopoiesis and of chronic myelogenous leukemia, and it presents the advantage of having fewer parameters, which makes comparison with both experimental data and alternative models much easier. Key-words Age-structured equations, hematopoiesis, chronic myelogenous leukemia, model simplification

    Nonparametric estimation of the division rate of a size-structured population

    Get PDF
    International audienceWe consider the problem of estimating the division rate of a size-structured population in a nonparametric setting. The size of the system evolves according to a transport-fragmentation equation: each individual grows with a given transport rate, and splits into two offsprings of the same size, following a binary fragmentation process with unknown division rate that depends on its size. In contrast to a deterministic inverse problem approach, as in (Perthame, Zubelli, 2007) and (Doumic, Perthame, Zubelli, 2009), we take in this paper the perspective of statistical inference: our data consists in a large sample of the size of individuals, when the evolution of the system is close to its time-asymptotic behavior, so that it can be related to the eigenproblem of the considered transport-fragmentation equation (see \cite{PR} for instance). By estimating statistically each term of the eigenvalue problem and by suitably inverting a certain linear operator (see previously quoted articles), we are able to construct a more realistic estimator of the division rate that achieves the same optimal error bound as in related deterministic inverse problems. Our procedure relies on kernel methods with automatic bandwidth selection. It is inspired by model selection and recent results of Goldenschluger and Lepski
    corecore