195 research outputs found
Ectopic expression of PtaRHE1, encoding a poplar RING-H2 protein with E3 ligase activity, alters plant development and induces defence-related responses
RING (really interesting new gene)-H2 domain-containing proteins are widely represented in plants and play important roles in the regulation of many developmental processes as well as in plant–environment interactions. In the present report, experiments were performed to unravel the role of the poplar gene PtaRHE1, coding for a RING-H2 protein. In vitro ubiquitination assays indicate a functional E3 ligase activity for PtaRHE1 with the specific E2 ubiquitin-conjugating enzyme UbcH5a. The overexpression of PtaRHE1 in tobacco resulted in a pleiotropic phenotype characterized by a curling of the leaves, the formation of necrotic lesions on leaf blades, growth retardation, and a delay in floral transition. The plant gene expression response to PtaRHE1 overexpression provided evidence for the up-regulation of defence- and/or programmed cell death-related genes. Moreover, genes coding for WRKY transcription factors as well as for mitogen-activated protein kinases, such as wound-induced protein kinase (WIPK), were also found to be induced in the transgenic lines as compared with the wild type. In addition, histochemical β-glucuronidase staining showed that the PtaRHE1 promoter is induced by plant pathogens and by elicitors such as salicylic acid and cellulase. Taken together, these results suggest that the E3 ligase PtaRHE1 plays a role in the ubiquitination-mediated regulation of defence response, possibly by acting upstream of WIPK and/or in the activation of WRKY factors
The Xanthophyll Carotenoid Lutein Reduces the Invasive Potential of Pseudomonas aeruginosa and Increases Its Susceptibility to Tobramycin.
peer reviewedRecently, the xanthophyll carotenoid lutein has been qualified as a potential quorum sensing (QS) and biofilm inhibitor against Pseudomonas aeruginosa. To address the potential of this xanthophyll compound as a relevant antivirulence agent, we investigated in depth its impact on the invasion capabilities and aggressiveness of P. aeruginosa PAO1, which rely on the bacterial ability to build and maintain protective barriers, use different types of motilities and release myriad virulence factors, leading to host cell and tissue damages. Our data, obtained on the PAO1 strain, indicate that all-trans lutein (Lut; 22 µM) disrupts biofilm formation and disorganizes established biofilm structure without affecting bacterial viability, while improving the bactericidal activity of tobramycin against biofilm-encapsulated PAO1 cells. Furthermore, this xanthophyll affects PAO1 twitching and swarming motilities while reducing the production of the extracellular virulence factors pyocyanin, elastase and rhamnolipids as well as the expression of the QS-regulated lasB and rhlA genes without inhibiting the QS-independent aceA gene. Interestingly, the expression of the QS regulators rhlR/I and lasR/I is significantly reduced as well as that of the global virulence factor regulator vfr, which is suggested to be a major target of Lut. Finally, an oxidative metabolite of Lut, 3'-dehydrolutein, induces a similar inhibition phenotype. Taken together, lutein-type compounds represent potential agents to control the invasive ability and antibiotic resistance of P. aeruginosa.3. Good health and well-bein
Recommended from our members
Analysis of Genome Sequences from Plant Pathogenic Rhodococcus Reveals Genetic Novelties in Virulence Loci
Members of Gram-positive Actinobacteria cause economically important diseases to plants. Within the Rhodococcus genus,
some members can cause growth deformities and persist as pathogens on a wide range of host plants. The current model
predicts that phytopathogenic isolates require a cluster of three loci present on a linear plasmid, with the fas operon central
to virulence. The Fas proteins synthesize, modify, and activate a mixture of growth regulating cytokinins, which cause a
hormonal imbalance in plants, resulting in abnormal growth. We sequenced and compared the genomes of 20 isolates of
Rhodococcus to gain insights into the mechanisms and evolution of virulence in these bacteria. Horizontal gene transfer was
identified as critical but limited in the scale of virulence evolution, as few loci are conserved and exclusive to
phytopathogenic isolates. Although the fas operon is present in most phytopathogenic isolates, it is absent from
phytopathogenic isolate A21d2. Instead, this isolate has a horizontally acquired gene chimera that encodes a novel fusion
protein with isopentyltransferase and phosphoribohydrolase domains, predicted to be capable of catalyzing and activating
cytokinins, respectively. Cytokinin profiling of the archetypal D188 isolate revealed only one activate cytokinin type that was
specifically synthesized in a fas-dependent manner. These results suggest that only the isopentenyladenine cytokinin type is
synthesized and necessary for Rhodococcus phytopathogenicity, which is not consistent with the extant model stating that a
mixture of cytokinins is necessary for Rhodococcus to cause leafy gall symptoms. In all, data indicate that only four
horizontally acquired functions are sufficient to confer the trait of phytopathogenicity to members of the genetically diverse
clade of Rhodococcus
Modification of lignin quality in transgenic poplar and alfalfa
Doctorat en Sciencesinfo:eu-repo/semantics/nonPublishe
L'amélioration des arbres forestiers: un défi scientifique majeur
info:eu-repo/semantics/publishe
A tobacco annexin involved in Rhodococcus fascians-plant interaction
info:eu-repo/semantics/nonPublishe
Structure and function of primary and secondary cell walls
info:eu-repo/semantics/nonPublishe
- …