6 research outputs found

    Optimization-Based Design of Nano-CMOS LC-VCOs

    No full text
    Part 16: Optimization in ElectronicsInternational audienceThis paper introduces a variability-aware methodology for the design of LC-VCOs in Nano-CMOS technologies. The complexity of the design as well as the necessity for having an environment offering the possibility for exploring design trade-offs has led to the development of design methodologies based multi-objective optimization procedures yielding the generation of Pareto-optimal surfaces. The efficiency of the process is granted by using analytical models for both passive and active devices. Although physics-based analytical expressions have been proposed for the evaluation of the lumped elements, the variability of the process parameters is usually ignored due to the difficulty to formalize it into an optimization performance index. The usually adopted methodology of considering only optimum solutions for the Pareto surface, may lead to pruning quasi-optimal solutions that may prove to be better, should their sensitivity to process parameter variation be accounted for. In this work we propose starting by generating an extended Pareto surface where both optimum and quasi-optimum solutions are considered. Finally information on the sensitivity to process parameter variations, is used for electing the best design solution

    Advances in variation-aware modeling, verification, and testing of analog ICs

    No full text
    ISBN 978-1-4577-2145-8International audienceThis tutorial paper describes novel scalable, nonlinear/generic, and industrially-oriented approaches to perform variation-aware modeling, verification, fault simulation, and testing of analog/custom ICs. In the first section, Dimitri De Jonghe, Elie Maricau, and Georges Gielen present a new advance in extracting highly nonlinear, variation-aware behavioral models, through the use of data mining and a re-framing of the model-order reduction problem. In the next section, Trent McConaghy describes new statistical machine learning techniques that enable new classes of industrial EDA tools, which in turn are enabling designers to perform fast and accurate PVT / statistical / high-sigma design and verification. In the third section, Bratislav Tasić presents a novel industrially-oriented approach to analog fault simulation that also has applicability to variation-aware design. In the final section, Haralampos Stratigopoulos describes describes state-of-the-art analog testing approaches that address process variability

    Use It or Lose It

    No full text
    Moore's Law scaling continues to yield higher transistor density with each succeeding process generation, leading to today'smany-core chip multiprocessors (CMPs) with tens or even hundreds of interconnected cores or tiles. Unfortunately, deep submicron CMOS process technology is marred by increasing susceptibility to wear. Prolonged operational stress gives rise to accelerated wearout and failure due to several physical failure mechanisms, including hot-carrier injection (HCI) and negative-bias temperature instability (NBTI). Each failure mechanism correlates with different usage-based stresses, all of which can eventually generate permanent faults. While the wearout of an individual core in many-core CMPs may not necessarily be catastrophic, a single fault in the interprocessor network-on-chip (NoC) fabric could render the entire chip useless, as it could lead to protocol-level deadlocks, or even partition away vital components such as the memory controller or other critical I/O. In this article, we study HCI- and NBTI-induced wear due to actual stresses caused by real workloads, applied onto the interconnect microarchitecture and develop a critical path model for NBTI-induced wearout. A key finding of this modeling is that, counter to prevailing wisdom, wearout in the CMP's on-chip interconnect is correlated with lack of load observed in the NoC routers rather than high load. We then develop a novel wearout-decelerating scheme in which routers under low load have their wear-sensitive components exercised without significantly impacting cycle time, pipeline depth, area, or power consumption of the overall router. A novel deterministic approach is proposed for the generation of appropriate exercise-mode data, ensuring design parameter targets are met. We subsequently show that the proposed design yields an ∼2,300× decrease in the rate of wear
    corecore